Reference documentation for deal.II version 8.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Classes | Public Member Functions | Private Member Functions | Static Private Member Functions | Private Attributes | Friends | List of all members
FE_Nedelec< dim > Class Template Reference

#include <fe_nedelec.h>

Inheritance diagram for FE_Nedelec< dim >:
[legend]

Classes

class  InternalData
 

Public Member Functions

 FE_Nedelec (const unsigned int p)
 
virtual std::string get_name () const
 
virtual bool has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const
 
virtual bool hp_constraints_are_implemented () const
 
virtual
FiniteElementDomination::Domination 
compare_for_face_domination (const FiniteElement< dim > &fe_other) const
 
virtual std::vector< std::pair
< unsigned int, unsigned int > > 
hp_vertex_dof_identities (const FiniteElement< dim > &fe_other) const
 
virtual std::vector< std::pair
< unsigned int, unsigned int > > 
hp_line_dof_identities (const FiniteElement< dim > &fe_other) const
 
virtual std::vector< std::pair
< unsigned int, unsigned int > > 
hp_quad_dof_identities (const FiniteElement< dim > &fe_other) const
 
virtual void get_face_interpolation_matrix (const FiniteElement< dim > &source, FullMatrix< double > &matrix) const
 
virtual void get_subface_interpolation_matrix (const FiniteElement< dim > &source, const unsigned int subface, FullMatrix< double > &matrix) const
 
virtual void interpolate (std::vector< double > &local_dofs, const std::vector< double > &values) const
 
virtual void interpolate (std::vector< double > &local_dofs, const std::vector< Vector< double > > &values, unsigned int offset=0) const
 
virtual void interpolate (std::vector< double > &local_dofs, const VectorSlice< const std::vector< std::vector< double > > > &values) const
 
virtual std::size_t memory_consumption () const
 
virtual FiniteElement< dim > * clone () const
 
- Public Member Functions inherited from FE_PolyTensor< PolynomialsNedelec< dim >, dim >
 FE_PolyTensor (const unsigned int degree, const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components)
 
virtual double shape_value (const unsigned int i, const Point< dim > &p) const
 
virtual double shape_value_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual Tensor< 1, dim > shape_grad (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 1, dim > shape_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual Tensor< 2, dim > shape_grad_grad (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 2, dim > shape_grad_grad_component (const unsigned int i, const Point< dim > &p, const unsigned int component) const
 
virtual UpdateFlags update_once (const UpdateFlags flags) const
 
virtual UpdateFlags update_each (const UpdateFlags flags) const
 
- Public Member Functions inherited from FiniteElement< dim, spacedim >
 FiniteElement (const FiniteElementData< dim > &fe_data, const std::vector< bool > &restriction_is_additive_flags, const std::vector< ComponentMask > &nonzero_components)
 
virtual ~FiniteElement ()
 
const FiniteElement< dim,
spacedim > & 
operator[] (const unsigned int fe_index) const
 
bool operator== (const FiniteElement< dim, spacedim > &) const
 
 DeclException1 (ExcShapeFunctionNotPrimitive, int,<< "The shape function with index "<< arg1<< " is not primitive, i.e. it is vector-valued and "<< "has more than one non-zero vector component. This "<< "function cannot be called for these shape functions. "<< "Maybe you want to use the same function with the "<< "_component suffix?")
 
 DeclException0 (ExcFENotPrimitive)
 
 DeclException0 (ExcUnitShapeValuesDoNotExist)
 
 DeclException0 (ExcFEHasNoSupportPoints)
 
 DeclException0 (ExcEmbeddingVoid)
 
 DeclException0 (ExcProjectionVoid)
 
 DeclException0 (ExcConstraintsVoid)
 
 DeclException0 (ExcInterpolationNotImplemented)
 
 DeclException0 (ExcBoundaryFaceUsed)
 
 DeclException0 (ExcJacobiDeterminantHasWrongSign)
 
 DeclException2 (ExcWrongInterfaceMatrixSize, int, int,<< "The interface matrix has a size of "<< arg1<< "x"<< arg2<< ", which is not reasonable in the present dimension.")
 
 DeclException2 (ExcComponentIndexInvalid, int, int,<< "The component-index pair ("<< arg1<< ", "<< arg2<< ") is invalid, i.e. non-existent.")
 
virtual const FullMatrix
< double > & 
get_restriction_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const
 
virtual const FullMatrix
< double > & 
get_prolongation_matrix (const unsigned int child, const RefinementCase< dim > &refinement_case=RefinementCase< dim >::isotropic_refinement) const
 
bool prolongation_is_implemented () const
 
bool isotropic_prolongation_is_implemented () const
 
bool restriction_is_implemented () const
 
bool isotropic_restriction_is_implemented () const
 
bool restriction_is_additive (const unsigned int index) const
 
const FullMatrix< double > & constraints (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const
 
bool constraints_are_implemented (const ::internal::SubfaceCase< dim > &subface_case=::internal::SubfaceCase< dim >::case_isotropic) const
 
virtual void get_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const
 
virtual void get_face_interpolation_matrix (const FiniteElement< dim, spacedim > &source, FullMatrix< double > &matrix) const
 
virtual void get_subface_interpolation_matrix (const FiniteElement< dim, spacedim > &source, const unsigned int subface, FullMatrix< double > &matrix) const
 
virtual std::vector< std::pair
< unsigned int, unsigned int > > 
hp_vertex_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const
 
virtual std::vector< std::pair
< unsigned int, unsigned int > > 
hp_line_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const
 
virtual std::vector< std::pair
< unsigned int, unsigned int > > 
hp_quad_dof_identities (const FiniteElement< dim, spacedim > &fe_other) const
 
virtual
FiniteElementDomination::Domination 
compare_for_face_domination (const FiniteElement< dim, spacedim > &fe_other) const
 
std::pair< unsigned int,
unsigned int
system_to_component_index (const unsigned int index) const
 
unsigned int component_to_system_index (const unsigned int component, const unsigned int index) const
 
std::pair< unsigned int,
unsigned int
face_system_to_component_index (const unsigned int index) const
 
virtual unsigned int face_to_cell_index (const unsigned int face_dof_index, const unsigned int face, const bool face_orientation=true, const bool face_flip=false, const bool face_rotation=false) const
 
unsigned int adjust_quad_dof_index_for_face_orientation (const unsigned int index, const bool face_orientation, const bool face_flip, const bool face_rotation) const
 
unsigned int adjust_line_dof_index_for_line_orientation (const unsigned int index, const bool line_orientation) const
 
const ComponentMaskget_nonzero_components (const unsigned int i) const
 
unsigned int n_nonzero_components (const unsigned int i) const
 
bool is_primitive (const unsigned int i) const
 
unsigned int n_base_elements () const
 
virtual const FiniteElement
< dim, spacedim > & 
base_element (const unsigned int index) const
 
unsigned int element_multiplicity (const unsigned int index) const
 
std::pair< std::pair< unsigned
int, unsigned int >, unsigned
int
system_to_base_index (const unsigned int index) const
 
std::pair< std::pair< unsigned
int, unsigned int >, unsigned
int
face_system_to_base_index (const unsigned int index) const
 
types::global_dof_index first_block_of_base (const unsigned int b) const
 
std::pair< unsigned int,
unsigned int
component_to_base_index (const unsigned int component) const
 
std::pair< unsigned int,
unsigned int
block_to_base_index (const unsigned int block) const
 
std::pair< unsigned int,
types::global_dof_index
system_to_block_index (const unsigned int component) const
 
unsigned int component_to_block_index (const unsigned int component) const
 
ComponentMask component_mask (const FEValuesExtractors::Scalar &scalar) const
 
ComponentMask component_mask (const FEValuesExtractors::Vector &vector) const
 
ComponentMask component_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const
 
ComponentMask component_mask (const BlockMask &block_mask) const
 
BlockMask block_mask (const FEValuesExtractors::Scalar &scalar) const
 
BlockMask block_mask (const FEValuesExtractors::Vector &vector) const
 
BlockMask block_mask (const FEValuesExtractors::SymmetricTensor< 2 > &sym_tensor) const
 
BlockMask block_mask (const ComponentMask &component_mask) const
 
const std::vector< Point< dim > > & get_unit_support_points () const
 
bool has_support_points () const
 
virtual Point< dim > unit_support_point (const unsigned int index) const
 
const std::vector< Point< dim-1 > > & get_unit_face_support_points () const
 
bool has_face_support_points () const
 
virtual Point< dim-1 > unit_face_support_point (const unsigned int index) const
 
const std::vector< Point< dim > > & get_generalized_support_points () const
 
bool has_generalized_support_points () const
 
const std::vector< Point< dim-1 > > & get_generalized_face_support_points () const
 
bool has_generalized_face_support_points () const
 
- Public Member Functions inherited from Subscriptor
 Subscriptor ()
 
 Subscriptor (const Subscriptor &)
 
virtual ~Subscriptor ()
 
Subscriptoroperator= (const Subscriptor &)
 
void subscribe (const char *identifier=0) const
 
void unsubscribe (const char *identifier=0) const
 
unsigned int n_subscriptions () const
 
void list_subscribers () const
 
 DeclException3 (ExcInUse, int, char *, std::string &,<< "Object of class "<< arg2<< " is still used by "<< arg1<< " other objects.\n"<< "(Additional information: "<< arg3<< ")\n"<< "Note the entry in the Frequently Asked Questions of "<< "deal.II (linked to from http://www.dealii.org/) for "<< "more information on what this error means.")
 
 DeclException2 (ExcNoSubscriber, char *, char *,<< "No subscriber with identifier \""<< arg2<< "\" did subscribe to this object of class "<< arg1)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
- Public Member Functions inherited from FiniteElementData< dim >
 FiniteElementData ()
 
 FiniteElementData (const std::vector< unsigned int > &dofs_per_object, const unsigned int n_components, const unsigned int degree, const Conformity conformity=unknown, const unsigned int n_blocks=numbers::invalid_unsigned_int)
 
unsigned int n_dofs_per_vertex () const
 
unsigned int n_dofs_per_line () const
 
unsigned int n_dofs_per_quad () const
 
unsigned int n_dofs_per_hex () const
 
unsigned int n_dofs_per_face () const
 
unsigned int n_dofs_per_cell () const
 
template<int structdim>
unsigned int n_dofs_per_object () const
 
unsigned int n_components () const
 
unsigned int n_blocks () const
 
const BlockIndicesblock_indices () const
 
bool is_primitive () const
 
unsigned int tensor_degree () const
 
bool conforms (const Conformity) const
 
bool operator== (const FiniteElementData &) const
 

Private Member Functions

void initialize_support_points (const unsigned int degree)
 
void initialize_restriction ()
 

Static Private Member Functions

static std::vector< unsigned intget_dpo_vector (const unsigned int degree, bool dg=false)
 

Private Attributes

Table< 2, doubleboundary_weights
 

Friends

template<int dim1>
class FE_Nedelec
 

Additional Inherited Members

- Public Types inherited from FiniteElementData< dim >
enum  Conformity {
  unknown = 0x00, L2 = 0x01, Hcurl = 0x02, Hdiv = 0x04,
  H1 = Hcurl | Hdiv, H2 = 0x0e
}
 
- Public Attributes inherited from FiniteElementData< dim >
const unsigned int dofs_per_vertex
 
const unsigned int dofs_per_line
 
const unsigned int dofs_per_quad
 
const unsigned int dofs_per_hex
 
const unsigned int first_line_index
 
const unsigned int first_quad_index
 
const unsigned int first_hex_index
 
const unsigned int first_face_line_index
 
const unsigned int first_face_quad_index
 
const unsigned int dofs_per_face
 
const unsigned int dofs_per_cell
 
const unsigned int components
 
const unsigned int degree
 
const Conformity conforming_space
 
BlockIndices block_indices_data
 
- Static Public Attributes inherited from FiniteElementData< dim >
static const unsigned int dimension = dim
 
- Protected Member Functions inherited from FE_PolyTensor< PolynomialsNedelec< dim >, dim >
virtual Mapping< dim, spacedim >
::InternalDataBase * 
get_data (const UpdateFlags, const Mapping< dim, spacedim > &mapping, const Quadrature< dim > &quadrature) const
 
virtual void fill_fe_values (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const Quadrature< dim > &quadrature, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, typename Mapping< dim, spacedim >::InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data, CellSimilarity::Similarity &cell_similarity) const
 
virtual void fill_fe_face_values (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const Quadrature< dim-1 > &quadrature, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, typename Mapping< dim, spacedim >::InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data) const
 
virtual void fill_fe_subface_values (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int face_no, const unsigned int sub_no, const Quadrature< dim-1 > &quadrature, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, typename Mapping< dim, spacedim >::InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data) const
 
- Protected Member Functions inherited from FiniteElement< dim, spacedim >
void reinit_restriction_and_prolongation_matrices (const bool isotropic_restriction_only=false, const bool isotropic_prolongation_only=false)
 
TableIndices< 2 > interface_constraints_size () const
 
void compute_2nd (const Mapping< dim, spacedim > &mapping, const typename Triangulation< dim, spacedim >::cell_iterator &cell, const unsigned int offset, typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal, InternalDataBase &fe_internal, FEValuesData< dim, spacedim > &data) const
 
- Protected Member Functions inherited from FiniteElementData< dim >
void set_primitivity (const bool value)
 
- Static Protected Member Functions inherited from FiniteElement< dim, spacedim >
static std::vector< unsigned intcompute_n_nonzero_components (const std::vector< ComponentMask > &nonzero_components)
 
- Protected Attributes inherited from FE_PolyTensor< PolynomialsNedelec< dim >, dim >
MappingType mapping_type
 
PolynomialsNedelec< dim > poly_space
 
FullMatrix< doubleinverse_node_matrix
 
Point< dim > cached_point
 
std::vector< Tensor< 1, dim > > cached_values
 
std::vector< Tensor< 2, dim > > cached_grads
 
std::vector< Tensor< 3, dim > > cached_grad_grads
 
- Protected Attributes inherited from FiniteElement< dim, spacedim >
std::vector< std::vector
< FullMatrix< double > > > 
restriction
 
std::vector< std::vector
< FullMatrix< double > > > 
prolongation
 
FullMatrix< doubleinterface_constraints
 
std::vector< Point< dim > > unit_support_points
 
std::vector< Point< dim-1 > > unit_face_support_points
 
std::vector< Point< dim > > generalized_support_points
 
std::vector< Point< dim-1 > > generalized_face_support_points
 
Table< 2, intadjust_quad_dof_index_for_face_orientation_table
 
std::vector< intadjust_line_dof_index_for_line_orientation_table
 

Detailed Description

template<int dim>
class FE_Nedelec< dim >

Warning
Several aspects of the implementation are experimental. For the moment, it is safe to use the element on globally refined meshes with consistent orientation of faces. See the todo entries below for more detailed caveats.

Implementation of Nédélec elements, conforming with the space Hcurl. These elements generate vector fields with tangential components continuous between mesh cells.

We follow the convention that the degree of Nédélec elements denotes the polynomial degree of the largest complete polynomial subspace contained in the Nédélec space. This leads to the consistently numbered sequence of spaces

\[ Q_{k+1} \stackrel{\text{grad}}{\rightarrow} \text{Nedelec}_k \stackrel{\text{curl}}{\rightarrow} \text{RaviartThomas}_k \stackrel{\text{div}}{\rightarrow} DGQ_{k} \]

Consequently, approximation order of the Nédélec space equals the value degree given to the constructor. In this scheme, the lowest order element would be created by the call FE_Nedelec<dim>(0). Note that this follows the convention of Brezzi and Raviart, though not the one used in the original paper by Nédélec.

This class is not implemented for the codimension one case (spacedim != dim).

Todo:
Even if this element is implemented for two and three space dimensions, the definition of the node values relies on consistently oriented faces in 3D. Therefore, care should be taken on complicated meshes.

Restriction on transformations

In some sense, the implementation of this element is not complete, but you will rarely notice. Here is the fact: since the element is vector-valued already on the unit cell, the Jacobian matrix (or its inverse) is needed already to generate the values of the shape functions on the cells in real space. This is in contrast to most other elements, where you only need the Jacobian for the gradients. Thus, to generate the gradients of Nédélec shape functions, one would need to have the derivatives of the inverse of the Jacobian matrix.

Basically, the Nédélec shape functions can be understood as the gradients of scalar shape functions on the real cell. They are thus the inverse Jacobian matrix times the gradients of scalar shape functions on the unit cell. The gradient of Nédélec shape functions is then, by the product rule, the sum of first the derivative (with respect to true coordinates) of the inverse Jacobian times the gradient (in unit coordinates) of the scalar shape function, plus second the inverse Jacobian times the derivative (in true coordinates) of the gradient (in unit coordinates) of the scalar shape functions. Note that each of the derivatives in true coordinates can be expressed as inverse Jacobian times gradient in unit coordinates.

The problem is the derivative of the inverse Jacobian. This rank-3 tensor can actually be computed (and we did so in very early versions of the library), but is a large task and very time consuming, so we dropped it. Since it is not available, we simply drop this first term.

What this means for the present case: first the computation of gradients of Nédélec shape functions is wrong in general. Second, in the following two cases you will not notice this:

Interpolation

The interpolation operators associated with the Nédélec element are constructed such that interpolation and computing the curl are commuting operations on rectangular mesh cells. We require this from interpolating arbitrary functions as well as the restriction matrices.

Node values

The node values for an element of degree k on the reference cell are:

  1. On edges: the moments of the tangential component with respect to polynomials of degree k.
  2. On faces: the moments of the tangential components with respect to dim-1 dimensional FE_Nedelec polynomials of degree k-1.
  3. In cells: the moments with respect to gradients of polynomials in FE_Q of degree k.

Generalized support points

The node values above rely on integrals, which will be computed by quadrature rules themselves. The generalized support points are a set of points such that this quadrature can be performed with sufficient accuracy. The points needed are those of QGaussk+1 on each edge and QGaussk+2 on each face and in the interior of the cell (or none for N1).

Author
Markus Bürg
Date
2009, 2010, 2011

Definition at line 159 of file fe_nedelec.h.

Constructor & Destructor Documentation

template<int dim>
FE_Nedelec< dim >::FE_Nedelec ( const unsigned int  p)

Constructor for the Nédélec element of degree p.

Member Function Documentation

template<int dim>
virtual std::string FE_Nedelec< dim >::get_name ( ) const
virtual

Return a string that uniquely identifies a finite element. This class returns FE_Nedelec<dim>(degree), with dim and degree replaced by appropriate values.

Implements FiniteElement< dim, spacedim >.

template<int dim>
virtual bool FE_Nedelec< dim >::has_support_on_face ( const unsigned int  shape_index,
const unsigned int  face_index 
) const
virtual

Check whether a shape function may be non-zero on a face.

Reimplemented from FiniteElement< dim, spacedim >.

template<int dim>
virtual bool FE_Nedelec< dim >::hp_constraints_are_implemented ( ) const
virtual

Return whether this element implements its hanging node constraints in the new way, which has to be used to make elements "hp compatible".

For the FE_Nedelec class the result is always true (independent of the degree of the element), as it implements the complete set of functions necessary for hp capability.

Reimplemented from FiniteElement< dim, spacedim >.

template<int dim>
virtual FiniteElementDomination::Domination FE_Nedelec< dim >::compare_for_face_domination ( const FiniteElement< dim > &  fe_other) const
virtual

Return whether this element dominates the one, which is given as argument.

template<int dim>
virtual std::vector<std::pair<unsigned int, unsigned int> > FE_Nedelec< dim >::hp_vertex_dof_identities ( const FiniteElement< dim > &  fe_other) const
virtual

If, on a vertex, several finite elements are active, the hp code first assigns the degrees of freedom of each of these FEs different global indices. It then calls this function to find out which of them should get identical values, and consequently can receive the same global DoF index. This function therefore returns a list of identities between DoFs of the present finite element object with the DoFs of fe_other, which is a reference to a finite element object representing one of the other finite elements active on this particular vertex. The function computes which of the degrees of freedom of the two finite element objects are equivalent, both numbered between zero and the corresponding value of dofs_per_vertex of the two finite elements. The first index of each pair denotes one of the vertex dofs of the present element, whereas the second is the corresponding index of the other finite element.

template<int dim>
virtual std::vector<std::pair<unsigned int, unsigned int> > FE_Nedelec< dim >::hp_line_dof_identities ( const FiniteElement< dim > &  fe_other) const
virtual

Same as hp_vertex_dof_indices(), except that the function treats degrees of freedom on lines.

template<int dim>
virtual std::vector<std::pair<unsigned int, unsigned int> > FE_Nedelec< dim >::hp_quad_dof_identities ( const FiniteElement< dim > &  fe_other) const
virtual

Same as hp_vertex_dof_indices(), except that the function treats degrees of freedom on lines.

template<int dim>
virtual void FE_Nedelec< dim >::get_face_interpolation_matrix ( const FiniteElement< dim > &  source,
FullMatrix< double > &  matrix 
) const
virtual

Return the matrix interpolating from a face of one element to the face of the neighboring element. The size of the matrix is then source.dofs_per_face times this->dofs_per_face.

Derived elements will have to implement this function. They may only provide interpolation matrices for certain source finite elements, for example those from the same family. If they don't implement interpolation from a given element, then they must throw an exception of type FiniteElement<dim>::ExcInterpolationNotImplemented.

template<int dim>
virtual void FE_Nedelec< dim >::get_subface_interpolation_matrix ( const FiniteElement< dim > &  source,
const unsigned int  subface,
FullMatrix< double > &  matrix 
) const
virtual

Return the matrix interpolating from a face of one element to the subface of the neighboring element. The size of the matrix is then source.dofs_per_face times this->dofs_per_face.

Derived elements will have to implement this function. They may only provide interpolation matrices for certain source finite elements, for example those from the same family. If they don't implement interpolation from a given element, then they must throw an exception of type ExcInterpolationNotImplemented.

template<int dim>
virtual void FE_Nedelec< dim >::interpolate ( std::vector< double > &  local_dofs,
const std::vector< double > &  values 
) const
virtual

Interpolate a set of scalar values, computed in the generalized support points.

Note
This function is implemented in FiniteElement for the case that the element has support points. In this case, the resulting coefficients are just the values in the suport points. All other elements must reimplement it.

Reimplemented from FiniteElement< dim, spacedim >.

template<int dim>
virtual void FE_Nedelec< dim >::interpolate ( std::vector< double > &  local_dofs,
const std::vector< Vector< double > > &  values,
unsigned int  offset = 0 
) const
virtual

Interpolate a set of vector values, computed in the generalized support points.

Since a finite element often only interpolates part of a vector, offset is used to determine the first component of the vector to be interpolated. Maybe consider changing your data structures to use the next function.

Reimplemented from FiniteElement< dim, spacedim >.

template<int dim>
virtual void FE_Nedelec< dim >::interpolate ( std::vector< double > &  local_dofs,
const VectorSlice< const std::vector< std::vector< double > > > &  values 
) const
virtual

Interpolate a set of vector values, computed in the generalized support points.

Reimplemented from FiniteElement< dim, spacedim >.

template<int dim>
virtual std::size_t FE_Nedelec< dim >::memory_consumption ( ) const
virtual

Determine an estimate for the memory consumption (in bytes) of this object.

This function is made virtual, since finite element objects are usually accessed through pointers to their base class, rather than the class itself.

Reimplemented from FiniteElement< dim, spacedim >.

template<int dim>
virtual FiniteElement<dim>* FE_Nedelec< dim >::clone ( ) const
virtual

A sort of virtual copy constructor. Some places in the library, for example the constructors of FESystem as well as the hp::FECollection class, need to make copies of finite elements without knowing their exact type. They do so through this function.

Implements FiniteElement< dim, spacedim >.

template<int dim>
static std::vector<unsigned int> FE_Nedelec< dim >::get_dpo_vector ( const unsigned int  degree,
bool  dg = false 
)
staticprivate

Only for internal use. Its full name is get_dofs_per_object_vector function and it creates the dofs_per_object vector that is needed within the constructor to be passed to the constructor of FiniteElementData.

If the optional argument dg is true, the vector returned will have all degrees of freedom assigned to the cell, none on the faces and edges.

template<int dim>
void FE_Nedelec< dim >::initialize_support_points ( const unsigned int  degree)
private

Initialize the generalized_support_points field of the FiniteElement class and fill the tables with interpolation weights (boundary_weights and interior_weights). Called from the constructor.

template<int dim>
void FE_Nedelec< dim >::initialize_restriction ( )
private

Initialize the interpolation from functions on refined mesh cells onto the father cell. According to the philosophy of the Nédélec element, this restriction operator preserves the curl of a function weakly.

Friends And Related Function Documentation

template<int dim>
template<int dim1>
friend class FE_Nedelec
friend

Allow access from other dimensions.

Definition at line 407 of file fe_nedelec.h.

Member Data Documentation

template<int dim>
Table<2, double> FE_Nedelec< dim >::boundary_weights
private

These are the factors multiplied to a function in the generalized_face_support_points when computing the integration.

See the glossary entry on generalized support points for more information.

Definition at line 401 of file fe_nedelec.h.


The documentation for this class was generated from the following file: