
AdaControl User Guide

1

Last edited: 15 October 2014

AdaControl is Copyright c© 2005-2014 Eurocontrol/Adalog, except for some specific
modules that are c© 2006 Belgocontrol/Adalog, c© 2006 CSEE/Adalog, or c© 2006
SAGEM/Adalog. AdaControl is free software; you can redistribute it and/or modify
it under terms of the GNU General Public License as published by the Free Software
Foundation; either version 2, or (at your option) any later version. This unit is distributed
in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have
received a copy of the GNU General Public License distributed with this program; see file
COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

As a special exception, if other files instantiate generics from this program, or if you link
units from this program with other files to produce an executable, this does not by itself
cause the resulting executable to be covered by the GNU General Public License. This
exception does not however invalidate any other reasons why the executable file might be
covered by the GNU Public License.

This document is Copyright c© 2005-2014 Eurocontrol/Adalog. This document may be
copied, in whole or in part, in any form or by any means, as is or with alterations, provided
that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy.

i

Table of Contents

1 Introduction . 2
1.1 Features . 2
1.2 Support . 3

1.2.1 Commercial support . 3
1.2.2 Other support . 4
1.2.3 Your support to us, too! . 4

1.3 History . 4
1.4 References . 5

2 Installation . 6
2.1 Building AdaControl from source . 6

2.1.1 Getting the correct version of the sources for your Gnat
version . 6

2.1.2 Prerequisites . 6
2.1.3 Build with installer (Windows) . 7
2.1.4 Build with project file . 7
2.1.5 Build with Makefile . 7
2.1.6 Build with a compiler other than GNAT 8
2.1.7 Testing AdaControl . 8
2.1.8 Customizing AdaControl . 8

2.2 Installing AdaControl . 9
2.3 Installing support for GPS . 9
2.4 Installing support for AdaGide . 9

3 Program Usage . 10
3.1 Command line parameters and options . 10

3.1.1 Input units . 10
3.1.2 Commands . 11
3.1.3 Output file . 12
3.1.4 Output format . 12
3.1.5 Output limits . 13
3.1.6 Project files . 13
3.1.7 Local disabling control . 13
3.1.8 Verbose and debug mode . 13
3.1.9 Treatment of warnings . 14
3.1.10 Exit on error . 14
3.1.11 ASIS options . 14

3.2 Return codes . 14
3.3 Environment variable and default settings . 15
3.4 Interactive mode . 15
3.5 Other execution modes . 15

3.5.1 Getting help . 15

ii

3.5.2 Checking commands syntax . 16
3.5.3 Generating a units list . 17

3.6 Running AdaControl from GPS . 17
3.6.1 The AdaControl menu and buttons . 17
3.6.2 Contextual menu . 19
3.6.3 AdaControl switches . 19

3.6.3.1 Files . 19
3.6.3.2 Processing . 19
3.6.3.3 Debug . 20
3.6.3.4 Output . 20
3.6.3.5 ASIS . 20

3.6.4 AdaControl preferences . 20
3.6.5 AdaControl language . 21
3.6.6 AdaControl help . 21
3.6.7 Caveat . 22

3.7 Running AdaControl from AdaGide . 22
3.8 Helpful utilities . 22

3.8.1 pfni . 22
3.8.2 makepat.sed . 23
3.8.3 unrepr.sed . 23

3.9 Optimizing Adacontrol . 23
3.9.1 Tree files and the ASIS context . 24
3.9.2 Generating tree files manually . 25
3.9.3 Choosing an appropriate combination of options 25

3.10 In case of trouble . 26
3.10.1 Known issues . 26
3.10.2 AdaControl or ASIS failure . 26

4 Command language reference 27
4.1 General . 27
4.2 Controls . 27

4.2.1 Control kinds and report messages . 28
4.2.2 Parameters . 29
4.2.3 Multiple controls . 30
4.2.4 Disabling controls . 30

4.2.4.1 Block disabling . 31
4.2.4.2 Line disabling . 31

4.2.5 Limitation . 31
4.3 Other commands . 31

4.3.1 Go command . 32
4.3.2 Quit command . 32
4.3.3 Message command . 32
4.3.4 Help command . 32
4.3.5 Clear command . 33
4.3.6 Set command . 33
4.3.7 Source command . 34
4.3.8 Inhibit command . 35

4.4 Example of commands . 35

iii

5 Rules reference . 37
5.1 Abnormal Function Return . 37

5.1.1 Syntax . 37
5.1.2 Action . 37
5.1.3 Tips . 37

5.2 Allocators . 38
5.2.1 Syntax . 38
5.2.2 Action . 38
5.2.3 Tips . 39
5.2.4 Limitations . 40

5.3 Array Declarations . 40
5.3.1 Syntax . 40
5.3.2 Action . 40
5.3.3 Tips . 42

5.4 Aspects . 43
5.4.1 Syntax . 43
5.4.2 Action . 43

5.5 Assignments . 43
5.5.1 Syntax . 43
5.5.2 Action . 43
5.5.3 Tip . 44
5.5.4 Limitations . 44

5.6 Barrier Expressions . 45
5.6.1 Syntax . 45
5.6.2 Action . 45
5.6.3 Tips . 46

5.7 Case Statement . 46
5.7.1 Syntax . 46
5.7.2 Action . 46
5.7.3 Tips . 47
5.7.4 Limitations . 47

5.8 Characters . 47
5.8.1 Syntax . 47
5.8.2 Action . 47
5.8.3 Limitations . 48

5.9 Comments . 48
5.9.1 Syntax . 48
5.9.2 Action . 48
5.9.3 Tips . 49
5.9.4 Limitations . 50

5.10 Declarations . 50
5.10.1 Syntax . 50
5.10.2 Action . 52
5.10.3 Tips . 57
5.10.4 Limitation . 57

5.11 Default Parameter . 57
5.11.1 Syntax . 57
5.11.2 Action . 58

iv

5.11.3 Tip . 58
5.12 Dependencies . 58

5.12.1 Syntax . 58
5.12.2 Action . 59
5.12.3 Tips . 59

5.13 Directly Accessed Globals . 60
5.13.1 Syntax . 60
5.13.2 Action . 60
5.13.3 Tips . 61
5.13.4 Limitations . 61

5.14 Duplicate Initialization Calls . 61
5.14.1 Syntax . 61
5.14.2 Action . 61
5.14.3 Limitation . 62

5.15 Entities . 62
5.15.1 Syntax . 62
5.15.2 Action . 62
5.15.3 Tips . 63
5.15.4 Limitation . 63

5.16 Entity Inside Exception . 63
5.16.1 Syntax . 63
5.16.2 Action . 63

5.17 Exception Propagation . 64
5.17.1 Syntax . 64
5.17.2 Action . 64
5.17.3 Tips . 66
5.17.4 Limitations . 66

5.18 Expressions . 67
5.18.1 Syntax . 67
5.18.2 Action . 68
5.18.3 Tips . 71
5.18.4 Limitations . 71

5.19 Generic Aliasing . 71
5.19.1 Syntax . 71
5.19.2 Action . 71
5.19.3 Limitations . 72

5.20 Global References . 72
5.20.1 Syntax . 72
5.20.2 Action . 72
5.20.3 Tips . 73
5.20.4 Limitations . 74

5.21 Header Comments . 74
5.21.1 Syntax . 74
5.21.2 Action . 74
5.21.3 Tips . 75
5.21.4 Limitation . 75

5.22 Improper Initialization . 76
5.22.1 Syntax . 76

v

5.22.2 Action . 76
5.22.3 Tips . 77
5.22.4 Limitations . 77

5.23 Instantiations . 78
5.23.1 Syntax . 78
5.23.2 Action . 78
5.23.3 Tips . 80
5.23.4 Limitation . 80

5.24 Insufficient Parameters . 80
5.24.1 Syntax . 80
5.24.2 Action . 80
5.24.3 Tips . 81

5.25 Local Access . 81
5.25.1 Syntax . 81
5.25.2 Action . 81
5.25.3 Tips . 81

5.26 Local Hiding . 82
5.26.1 Syntax . 82
5.26.2 Action . 82
5.26.3 Variables . 82
5.26.4 Tips . 83

5.27 Max Blank Lines . 83
5.27.1 Syntax . 83
5.27.2 Action . 83

5.28 Max Call Depth . 83
5.28.1 Syntax . 83
5.28.2 Action . 84
5.28.3 Tip . 84
5.28.4 Limitations . 84

5.29 Max Line Length . 84
5.29.1 Syntax . 84
5.29.2 Action . 85

5.30 Max Nesting . 85
5.30.1 Syntax . 85
5.30.2 Action . 85

5.31 Max Size . 85
5.31.1 Syntax . 86
5.31.2 Action . 86
5.31.3 Tip . 86

5.32 Max Statement Nesting . 86
5.32.1 Syntax . 87
5.32.2 Action . 87

5.33 Movable Accept Statements . 87
5.33.1 Syntax . 87
5.33.2 Action . 87
5.33.3 Tips . 87

5.34 Naming Convention . 88
5.34.1 Syntax . 88

vi

5.34.2 Action . 90
5.34.3 Variables . 92
5.34.4 Tips . 93
5.34.5 Limitations . 93

5.35 No Operator Usage . 93
5.35.1 Syntax . 94
5.35.2 Action . 94
5.35.3 Tips . 94

5.36 Non Static . 95
5.36.1 Syntax . 95
5.36.2 Action . 95
5.36.3 Limitations . 95
5.36.4 Tips . 95

5.37 Not Elaboration Calls . 95
5.37.1 Syntax . 95
5.37.2 Action . 96
5.37.3 Limitations . 96

5.38 Not Selected Name . 96
5.38.1 Syntax . 96
5.38.2 Action . 96
5.38.3 Tip . 97

5.39 Object Declarations . 97
5.39.1 Syntax . 97
5.39.2 Action . 97
5.39.3 Tip . 98
5.39.4 Limitation . 98

5.40 Parameter Aliasing . 98
5.40.1 Syntax . 98
5.40.2 Action . 98
5.40.3 Limitation . 99

5.41 Parameter Declarations . 99
5.41.1 Syntax . 99
5.41.2 Action . 100
5.41.3 Tips . 101

5.42 Positional Associations . 101
5.42.1 Syntax . 101
5.42.2 Action . 101
5.42.3 Tips . 102

5.43 Potentially Blocking Operations . 103
5.43.1 Syntax . 103
5.43.2 Action . 103
5.43.3 Tips . 103
5.43.4 Limitation . 103

5.44 Pragmas . 104
5.44.1 Syntax . 104
5.44.2 Action . 104
5.44.3 Tips . 104

5.45 Record Declarations . 104

vii

5.45.1 Syntax . 104
5.45.2 Action . 105
5.45.3 Tips . 106
5.45.4 Limitations . 106

5.46 Reduceable Scope . 106
5.46.1 Syntax . 106
5.46.2 Action . 106
5.46.3 Tips . 107
5.46.4 Limitation . 107

5.47 Representation Clauses . 107
5.47.1 Syntax . 107
5.47.2 Action . 108
5.47.3 Limitation . 109
5.47.4 Tips . 109

5.48 Return Type . 109
5.48.1 Syntax . 109
5.48.2 Action . 110

5.49 Side Effect Parameters . 110
5.49.1 Syntax . 110
5.49.2 Action . 110
5.49.3 Limitation . 111

5.50 Silent Exceptions . 111
5.50.1 Syntax . 111
5.50.2 Action . 111
5.50.3 Limitations . 113

5.51 Simplifiable Expressions . 113
5.51.1 Syntax . 113
5.51.2 Action . 113
5.51.3 Tips . 114

5.52 Simplifiable Statements . 114
5.52.1 Syntax . 114
5.52.2 Action . 114
5.52.3 Tips . 117

5.53 Statements . 117
5.53.1 Syntax . 117
5.53.2 Action . 118
5.53.3 Tips . 120

5.54 Style . 120
5.54.1 Syntax . 120
5.54.2 Action . 121
5.54.3 Tips . 123
5.54.4 Limitations . 124

5.55 Terminating Tasks . 124
5.55.1 Syntax . 124
5.55.2 Action . 124
5.55.3 Tips . 124

5.56 Type Initial Values . 124
5.56.1 Syntax . 124

viii

5.56.2 Action . 125
5.57 Type Usage . 125

5.57.1 Syntax . 125
5.57.2 Action . 125
5.57.3 Tips . 126

5.58 Uncheckable . 126
5.58.1 Syntax . 126
5.58.2 Action . 126
5.58.3 Tips . 127
5.58.4 Limitation . 127

5.59 Unit Pattern . 127
5.59.1 Syntax . 127
5.59.2 Action . 128
5.59.3 Tips . 129

5.60 Units . 129
5.60.1 Syntax . 129
5.60.2 Action . 129
5.60.3 Tip . 129

5.61 Unnecessary Use Clause . 130
5.61.1 Syntax . 130
5.61.2 Action . 130
5.61.3 Tip . 130
5.61.4 Limitations . 131

5.62 Unsafe Elaboration . 131
5.62.1 Syntax . 131
5.62.2 Action . 131
5.62.3 Tips . 131

5.63 Unsafe Paired Calls . 132
5.63.1 Syntax . 132
5.63.2 Action . 132
5.63.3 Tips . 133
5.63.4 Limitation . 134

5.64 Unsafe Unchecked Conversion . 134
5.64.1 Syntax . 134
5.64.2 Action . 134
5.64.3 Limitation . 134

5.65 Usage . 135
5.65.1 Syntax . 135
5.65.2 Action . 135
5.65.3 Tips . 137
5.65.4 Limitations . 137

5.66 Use Clauses . 138
5.66.1 Syntax . 138
5.66.2 Action . 138

5.67 With Clauses . 138
5.67.1 Syntax . 138
5.67.2 Action . 138
5.67.3 Variables . 139

ix

5.67.4 Tips . 139

6 Examples of using AdaControl for common
programming rules . 140

6.1 Migrating from Gnatcheck . 140
6.2 Rules files provided with AdaControl . 140
6.3 Automatically checkable rules . 141
6.4 Rules that need manual inspection . 144

Appendix A Specifying an Ada entity name
. 145

A.1 General syntax . 145
A.2 Overloaded names . 145
A.3 Enumeration literals . 146
A.4 Operators . 146
A.5 Attributes . 147
A.6 Anonymous constructs and extended return statements 147
A.7 Record and protected types components . 148
A.8 Formals of access to subprogram types . 148
A.9 Limitation . 148

Appendix B Syntax of regular expressions . . 149

Appendix C Non upward-compatible changes
. 152

C.1 Migrating from 1.15r5 . 152
C.1.1 Array Declarations . 152
C.1.2 Multiple Assignments . 152
C.1.3 No Operator Usage . 152
C.1.4 Object Declarations . 153
C.1.5 Statements . 153
C.1.6 Style . 153

C.2 Migrating from 1.14r9 . 153
C.2.1 Local Hiding . 153
C.2.2 Max Nesting . 154
C.2.3 Parameter Declarations . 154

C.3 Migrating from 1.11r4 . 154
C.3.1 Expressions . 154
C.3.2 Special Comments . 154

C.4 Migrating from 1.10r10 . 154
C.4.1 GPS integration . 154
C.4.2 Representation Clauses . 154

C.5 Migrating from 1.9r4 . 155
C.5.1 Array Declarations . 155
C.5.2 Declarations . 155
C.5.3 Default Parameter . 156

x

C.5.4 Improper Initialization . 156
C.6 Migrating from 1.8r8 . 156

C.6.1 CSV(X) format . 156
C.6.2 Default Parameter . 156
C.6.3 Other Dependencies . 156
C.6.4 Special Comments . 157
C.6.5 Statements . 157

C.7 Migrating from 1.7r9 . 157
C.7.1 Case Statement . 157
C.7.2 Max Parameters . 157

C.8 Migrating from 1.6r8 . 157
C.8.1 “message” command . 157
C.8.2 “source” command . 158
C.8.3 Control Characters . 158
C.8.4 If For Case . 158
C.8.5 Instantiations . 158
C.8.6 Local Instantiation . 158
C.8.7 Naming Convention . 158
C.8.8 No Safe Initialization . 159
C.8.9 Special Comments . 159
C.8.10 Statements . 159

C.9 Migrating from 1.5r24 . 159
C.9.1 Declarations . 159
C.9.2 Naming Convention . 159
C.9.3 Non Static Constraint . 160
C.9.4 Positional Parameters . 160
C.9.5 Real Operator . 160
C.9.6 Style . 160

C.10 Migrating from 1.4r20 . 161
C.10.1 GPS integration . 161
C.10.2 Declarations . 161
C.10.3 Header Comments . 161
C.10.4 No Closing Name . 161
C.10.5 Specification Objects . 161
C.10.6 Statement . 161
C.10.7 When Others Null . 161

Chapter 1: Introduction 2

1 Introduction

AdaControl is an Ada rules controller. It is used to control that Ada software meets the
requirements of a number of parameterizable rules. It is not intended to supplement checks
made by the compiler, but rather to search for particular violations of good-practice rules,
or to check that some rules are obeyed project-wide. AdaControl can also be handy to make
statistics about certain usages of language features, or simply to search for the occurrences
of particular constructs; its scope is therefore not limited to enforcing programming rules,
although it is of course one of its main goals.

AdaControl is a commercial product of Adalog with professional grade support available.
Getting support is highly recommended for industrial projects. Adacontrol can also be
customized or extended to match your special needs, please refer to Section 1.2 [Support],
page 3 or contact Adalog at info@adalog.fr.

1.1 Features

AdaControl analyzes a set of Ada units, according to parameterizable controls. Controls
can be given from the command line, from a file, or interactively. There is a wide range of
controls available. Some are quite simple (although very useful):

• Control physical layout of the program (Maximum line length, no use of tabulations...)

• Control occurences of special strings in comments (like TBD for “To Be Defined”),
with full wildcarding.

• Use of features (goto statement, tasking, pointers, variables in package specifications...)

• Use of any declared entity, with full overloading resolution

Other rules are quite sophisticated:

• Control series of “if”...”elsif” that could be replaced by “case” statements

• Verify usage of declarations (variables that should be constant, variables read but not
written...)

• Control declarations that could be moved to a more reduced, internal scope

• Limit the call depth of a program (and diagnose recursive subprograms)

• Enforce a pattern that guarantees that exceptions are not handled silently

• Enforce a pattern for paired calls (like semaphore’s “P” and “V”) that guarantees that
the closing call is always executed, even in presence of exceptions.

• Check that there is no aliasing between out parameters

• Ensure that no protected operation calls a potentially blocking operation

and much, much more... See Chapter 5 [Rules reference], page 37 for the complete
reference for all possible controls.

AdaControl is very simple to use. It takes, as parameters, a list of units to process and a
list of commands that define the controls to apply. The complete syntax of the commands
is described in chapter Chapter 4 [Command language reference], page 27.

AdaControl produces messages to the standard output, unless redirected. Several levels
of messages are defined (i.e. error or found), depending on the kind of the control (i.e.
check or search).

http://www.adalog.fr/adalog2.htm
mailto:info@adalog.fr

Chapter 1: Introduction 3

Rules can be locally disabled for a part of the source code, and various options can be
passed to the program.

Ex:

Given the following package:

package Pack is
pragma Pure (Pack);

...

end Pack;

The following command:

adactl -l "search pragmas (pure)" pack

produces the following result (displayed to standard output):

pack.ads:2:4: Found: PRAGMAS: use of pragma Pure

AdaControl integrates nicely in environments such as GPS (see Section 3.6 [Running
AdaControl from GPS], page 17), AdaGide (see Section 3.7 [Running AdaControl from
AdaGide], page 22), or emacs (see Section 4.2.1 [Control kinds and report messages],
page 28). In those environments, you can run AdaControl from menus or by just click-
ing on a button!

1.2 Support

1.2.1 Commercial support

Adalog provides commercial support for AdaControl. Support includes the following bene-
fits:

• Help with installation procedures.

• Explanations regarding the use of the tool, and help for translating coding standards
into AdaControl rules.

• Dedicated account into our MantisBT system for priority handling of problem reports.

• Correction of problems encountered in the use of AdaControl. Pre-releases versions of
AdaControl are provided for each corrected problem.

• Access to beta-versions before they are released

• Keeping in sync customer’s own custom rules with the latest version of AdaControl.

• Reduced rate for on-demand development of custom rules.

• Priority consideration of enhancement requests. Satisfying enhancement requests is
not part of the support contract; however, Adalog is constantly improving AdaControl,
and suggestions originating from supported customers are given a high priority in our
todo list.

Adalog cannot correct problems whose origin is due to compiler bugs or defects in the
implementation of ASIS (contact your compiler provider for support on these problems).
However, Adalog will do its best effort to find workarounds for such problems.

In addition, Adalog can provide various services:

• Custom improvements to AdaControl, including application-specific rules;

• consulting services for defining coding standards;

Chapter 1: Introduction 4

• consulting services in all areas related to Ada, real-time, compilation, etc. See Adalog’s
site for details.

For pricing information about support contract and other services, please contact
info@adalog.fr.

1.2.2 Other support

There is a Wiki for questions about AdaControl at
https://sourceforge.net/p/adacontrol/wiki/Home/. This is the place to ask for
information, make suggestions, or get help from the community.

For problem reports, please use our MantisBT system at
http://sourceforge.net/apps/mantisbt/adacontrol.

1.2.3 Your support to us, too!

If you enjoy AdaControl, there are several things you can do to help us continue and improve
this nice project.

• Rate it, or even better post a review, on the SourceForge review page

• Click “I use it” from AdaControl’s home page.

• Rate it on AdaControl’s Ohloh page

• Get a support contract, or encourage your company, your friends, or anybody else to
get a support contract!

• Provide good ideas, new rules, suggestions for improvements...

And remember: developing AdaControl is an expensive effort (according to Ohlo’s CO-
COMO model, it is worth 13 man.year of development). We need support from our users
to keep it running!

1.3 History

The development of AdaControl was initially funded by Eurocontrol (http: / / www .
eurocontrol.int), which needed a tool to help in verifying the million+ lines of code
that does Air Traffic Flow Management over Europe. Because it was felt that such a
tool would benefit the community at-large, and that further improvements made by
the community would benefit Eurocontrol, it was decided to release AdaControl as free
software. Later, Eurocontrol, Belgocontrol, Ansaldo (formerly CSEE-Transport), and
SAGEM-DS sponsored the development of more rules.

The requirements for AdaControl were written by Philippe Waroquiers (Eurocontrol-
Brussels), who also conducted extensive testing of AdaControl over the Eurocontrol soft-
ware. The software was developped by Arnaud Lecanu and Jean-Pierre Rosen (Adalog).
Rules, improvements, etc. were contributed by Pierre-Louis Escouflaire (Adalog), Alain
Fontaine (ABF consulting), Richard Toy (Eurocontrol-Maastricht), and Isidro Ilasa Veloso
(GMV). AdaGide support and improvement of icons were contributed by Gautier de Mont-
mollin. Emmanuel Masker (Alstom) and Yannick Duchene contributed to GPS integration.

See file HISTORY for a description of the various versions of AdaControl, including en-
hancements of the current version over the previous ones. Users of a previous version are
warned that the rules are not 100% upward-compatible: this is necessary to make the rules

http://www.adalog.fr/adalog2.htm
http://www.adalog.fr/adalog2.htm
mailto:info@adalog.fr
https://sourceforge.net/p/adacontrol/wiki/Home/
http://sourceforge.net/apps/mantisbt/adacontrol
http://sourceforge.net/projects/adacontrol/reviews/
http://www.adalog.fr/adacontrol2.htm
http://www.ohloh.net/p/11353?ref=sample
http://www.eurocontrol.int
http://www.eurocontrol.int

Chapter 1: Introduction 5

more consistent and easier to use. However, the incompatibilities are straightforward to
fix and should affect only a very limited number of files. See Appendix C [Non upward-
compatible changes], page 152 for details.

1.4 References

1. “On the benefits for industrials of sponsoring free software development”, Ada User
Journal, Volume 26, n 4, december 2005

http://www.adalog.fr/publicat/Free-software.pdf

2. “A Comparison of Industrial Coding Rules”, Ada User Journal, Volume 29, n 4, de-
cember 2008

http://www.adalog.fr/publicat/coding-rules.pdf

3. “A Methodology for Avoiding Known Compiler Problems Using Static Analysis”, pro-
ceedings of the ACM SIGAda Annual International Conference (SIGAda 2010)

http://www.adalog.fr/publicat/compiler-probs.pdf

http://www.adalog.fr/publicat/Free-software.pdf
http://www.adalog.fr/publicat/coding-rules.pdf
http://www.adalog.fr/publicat/compiler-probs.pdf

Chapter 2: Installation 6

2 Installation

Like any ASIS application, AdaControl can be run only if the compiler available on the
system has exactly the same version as the one used to compile AdaControl itself. The
executable distribution of AdaControl will work only with GNAT version GPL 2014, as
distributed by AdaCore. If you are using any other version, please use the source distribution
of AdaControl and compile it as indicated below.

Another reason for using the source distribution of AdaControl is that the user may not
be interested in all provided rules. It is very easy to remove some rules from AdaControl
to increase its speed. See [Customizing AdaControl], page 8.

2.1 Building AdaControl from source

This section is only for the source distribution of AdaControl. If you downloaded an exe-
cutable distribution (and are using the latest version of GNAT GPL), you may skip to the
next section.

2.1.1 Getting the correct version of the sources for your Gnat
version

ASIS is continuously evolving to support Ada-2005/2012 features, and so is AdaControl.
As a consequence, the full set of features of AdaControl is supported only with the latest
versions of Gnat, namely GnatPRO 7.2.0 and GnatGPL-2013 (and higher). We refer to
these versions as the “new Gnat”, and we encourage all users to use these versions.

Some user may however need to use an older version of Gnat. We provide also a version
of AdaControl that is compatible with versions GnatPRO 7.0.x and GnatGPL2011 and
older (before some incompatible -but necessary- changes in ASIS happened). We refer to
these versions as the “old Gnat”.

The release whose distribution files start with “adactl” is for the new Gnat, and the one
whose distribution files start with “adactl-old” is for the old-gnat. Both versions provide
the same features, except that controls related to Ada-2012 (or that depend on new features
of ASIS) are not available in the old-gnat version. Moreover, the old-gnat version is now
frozen, and will not receive any new features or improvements in the future, unless requested
by a supported customer (such requests will be honoured as part of the support contract).
See Section 1.2 [Support], page 3 for information on becoming a supported user.

Note that intermediate releases of Gnat (GnatPRO-7.1.x, GnatGPL2012) are not fully
compatible with either of these distribution. Depending on exact version, problems may
range from compilation errors to incorrect results in some rare (Ada 2012) cases. Compatible
sources can be obtained from the Git repository of AdaControl on SourceForge (http://
adacontrol.sourceforge.net). We will be happy to help our supported customers who
must use one of these versions.

2.1.2 Prerequisites

The following software must be installed in order to compile AdaControl from source:

• A GNAT compiler, any version (but please consider [Getting the correct version of the
sources for your Gnat version], page 6 above). Note that the compiler must also be
available on the machine in order to run AdaControl (all ASIS application need the
compiler).

http://adacontrol.sourceforge.net
http://adacontrol.sourceforge.net

Chapter 2: Installation 7

• ASIS for GNAT

Make sure to have the same version of GNAT and ASIS. The version used for running
AdaControl must be the same as the one used to compile AdaControl itself.

2.1.3 Build with installer (Windows)

Run the installer (adactl_src-setup.exe). This will automatically build and install Ada-
Control, no other installation is necessary.

2.1.4 Build with project file

Simply go to the src directory and type:

gnatmake -Pbuild.gpr

You’re done!

Caveat (old gnat only): Due to a bug in some versions, if you are using GNATPro 6.1.2
and above, you must set the variable GNAT FIX to 1; i.e. invoke the command as:

gnatmake -Pbuild.gpr -XGNAT_FIX=1

2.1.5 Build with Makefile

The previous method may fail if Asis is not installed in an usual place. As an alternative
method, it is possible to build AdaControl with a regular Makefile.

The file Makefile (in directory src) should be modified to match the commands and
paths of the target system. The following variables are to be set:

• ASIS TOP

• ASIS INCLUDE

• ASIS OBJ

• ASIS LIB

• RM

• EXT

How to set these variables properly is documented in Makefile. See also the compilation
options in this file; a change is needed if you are using GNATPro 6.1.2 and above.

Then, run the make command:

$ cd src

$ make build

It is also possible to delete object files and do other actions with this “Makefile”, run
the following command to get more information:

$ make help

NOTE: Building AdaControl needs the “make” command provide with GNAT; it works
both with WIN32 shell and UNIX shell.

Chapter 2: Installation 8

2.1.6 Build with a compiler other than GNAT

It should be possible to compile AdaControl with other compilers than GNAT, although
we didn’t have an opportunity to try it. If you have another compiler that supports ASIS,
note that it may require some easy changes in the package Implementation_Options to
give proper parameters to the Associate procedure of ASIS. Rules that need string pat-
tern matchings need the package Gnat.Regpat. If you compile AdaControl with another
compiler, you can either port Gnat.Regpat to your system, or use a (limited) portable
implementation of a simple pattern matching (package String_Matching_Portable). Edit
the file string_matching.ads and change it as indicated in the comments. No other change
should be necessary.

Alternatively, if you are using another compiler, you can try and compile your program
with GNAT just to be able to run AdaControl. However, compilers often differ in their
support of representation clauses, which can cause your program to be rejected by GNAT.
In that case, we provide a sed script to comment-out all representation clauses; this can be
sufficient to allow you to use AdaControl. See Section 3.8.3 [unrepr.sed], page 23.

2.1.7 Testing AdaControl

Testing AdaControl needs a UNIX shell, so it works only with UNIX systems. However, it
is possible to run the tests on a WIN32 system by using an UNIX-like shell for WIN32, such
as those provided by CYGWIN or MSYS. To run the tests, enter the following commands:

$ cd test

$./run.sh

All tests must report PASSED. If they don’t, it may be due to one of the following issues:

• You are using an old version of GNAT. AdaControl runs without any known problem
(and it has been checked against the whole ACATS) only with the latest GNATPro
and GNATGPL versions; earlier versions are known to have bugs and unimplemented
features that will not allow AdaControl to run correctly in some cases. We strongly
recommend to always use the most recent version of GNAT.

• You run an old-gnat version of AdaControl with GNATPro (6.1.2 and above) and you
forgot to specify the “-XGNAT FIX=1” option. See [Build with project file], page 7.

• It may happen that the test tfw_check reports “FAILED” on some sytems, because
it depends on the order in which the operating system lists files. If this happens, try
(from the test directory):

diff res/tfw_check.txt ref/

If the only difference is that some lines are at different places, the test is OK.

2.1.8 Customizing AdaControl

If there are some rules that you are not interested in, it is very easy to remove them from
AdaControl:

1. In the src directory, edit the file framework-plugs.adb. There is a with clause for
each rule (children of package Rules). Comment out the ones you don’t want.

2. Recompile framework-plugs.adb. There will be error messages about unknown pro-
cedure calls. Comment out the corresponding lines.

3. Compile AdaControl normally. That’s all!

Chapter 2: Installation 9

It is also possible to add new rules to AdaControl. If your favorite rules are not currently
supported, you have several options:

1. If you have some funding available, please contact info@adalog.fr. We’ll be happy to
make an offer to customize AdaControl to your needs.

2. If you don’t have funding, but have some knowledge of ASIS programming, you can
add the rule yourself. We have made every effort to make this as simple as possible.
Please refer to the AdaControl programmer’s manual for details. If you do so, please
send your rules to rosen@adalog.fr, and we’ll be happy to integrate them in the general
release of AdaControl to make them available to everybody.

3. If you have good ideas, but don’t feel like implementing them yourself (nor financing
them), please send a note to rosen@adalog.fr. We will eventually incorporate all good
suggestions, but we can’t of course commit to any dead-line in that case.

2.2 Installing AdaControl

All you need to run AdaControl is the executable named adactl under Linux or adactl.exe
under Windows. In addition, pfni (or pfni.exe under Windows) is a convenient utility,
required by the GPS support. See Section 3.8.1 [pfni], page 22.

If you downloaded the Windows installer executable version of AdaControl, simply run
adactl_exe-setup.exe. This will install all the files in the recommended locations (as has
been done with the Windows installer source version), including GPS support if you have
GPS installed and/or AdaGide support if you have AdaGide installed.

If you built AdaControl from source without an installer, the executables are in the src
directory of the distribution. If you downloaded an executable distribution, they are in the
root directory of the distribution. Copy the executables to any convenient directory on your
path; a good place, for example, is in the bin directory of your GNAT installation.

2.3 Installing support for GPS

Integration of AdaControl into GPS with all functionalities requires GPS version 4.2 or
above (delivered since GNAT/GPL2008).

To add AdaControl support to GPS, copy the file GPS/adacontrol.xml into the <GNAT_
dir>/share/gprconfig directory; copy all other files from the GPS directory into the <GPS_
dir>/share/gps/plug-ins directory. Copy also HTML files from the doc directory into
the <GPS_dir>/share/doc/gps/html to access AdaControl’s guides from the "Help" menu
of GPS.

2.4 Installing support for AdaGide

To add AdaControl support to AdaGide, copy the file AdaControl.tdf from the AdaGide

directory into AdaGide’s root directory. Note that AdaControl support requires AdaGide
version 7.42 or above.

mailto::info@adalog.fr
mailto::rosen@adalog.fr
mailto::rosen@adalog.fr

Chapter 3: Program Usage 10

3 Program Usage

AdaControl is a command-line program, i.e. it is normally called directly from the system
shell. Options are introduced by a “-” followed by a letter and can be grouped as usual.
Some options take the following word on the command line as a value; such options must
appear last in a group of options. Parameters are words on the command line that stand
by themselves. Options and parameters can be given in any order.

The syntax for invoking AdaControl in regular mode is:

adactl [-deEirsTuvwx]

[-p <project file>] [-f <rules file>] [-l <rules list>]

[-o <output file>] [-t <trace file>] [-F <format>]

[-S <statistics level>] [-m <warning limit>] [-M <message limit>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

AdaControl can process Ada-2005 as well as Ada-95 programs, even if there are currently
few Ada-2005 related controls - but we hope to improve that situation in the near future.

If you are using Ada-2005 (or Ada-2012) features, make sure that GNAT is set up for
Ada-2005/2012 (this is the default for GNAT-GPL). Due to technical reasons, the -gnat05
option cannot be passed to the compiler in “compile on the fly” mode, but you can do any
of the following:

• have a “gnat.adc” file in the current directory that contains a pragma Ada_05; (or
pragma Ada_12;)

• put a pragma Ada_05 (or pragma Ada_12;) on top of every compilation unit that uses
Ada-2005/2012 features;

• generate the tree files manually (see Section 3.9.2 [Generating tree files manually],
page 25) with the “-gnat05” (or “-gnat12)”) option. Note that this allows you to pass
any other GNAT option as well.

Note that if your program is pure Ada-95 and you are using a version of GNAT where
Ada-2005 is the default (especially GNAT-GPL), and in the rare cases where your program
would not compile in Ada-2005 mode (notably if you have a function that returns a task
type), you can force Ada-95 the same way by using pragma Ada_95 instead.

3.1 Command line parameters and options

3.1.1 Input units

Units to be processed are given as parameters on the command line. Note that they are
Ada compilation unit names, not file names: case is not significant, and there should be
no extension! Child units are allowed following normal Ada naming rules: Parent.Child,
but be aware that specifying a child unit will automatically include its parent unit in the
analysis. Subunits are processed during the analysis of the including unit; there is therefore
no need to specify subunits explicitely. If you do specify a subunit explicitly, it will result
in the whole enclosing unit being analyzed.

However, as a convenience to the user, units can be specified as file names, provided they
follow the default GNAT naming convention. More precisely, if a parameter ends in “.ads”
or “.adb”, the unit name is extracted from it (and all “-” in the name are substituted with

Chapter 3: Program Usage 11

“.”). File names can include a path; in this case, the path is automatically added to the
list of directories searched (“-I” ASIS option). The file notation is convenient to process all
units in a directory, as in the following example:

adactl -f my_rules.aru *.adb

In the unlikely case where you have a child unit called Ads or Adb, use the “-u” option
to force interpretation of all parameters as unit names.

By default, both the specification and body of the unit are processed; however, it is
possible to specify processing of the specification only by providing the “-s” option. If only
file names are given, the “-s” option is assumed if all files are specifications (“.ads” files). It
is not possible to specify processing of bodies only, since rules dealing with visibility would
not work.

The “-r” option tells AdaControl to process (recursively) all user units that the specified
units depend on (including parent units if the unit is a child unit or a subunit). Predefined
Ada units and units belonging to the compiler’s run-time library are never processed.

Ex:

adactl -r -f my_rules.aru my_main

will process my_main and all units that my_main depends on. If my_main is the main
procedure, this means that the whole program will be processed.

It is possible to specify more than one unit (not file) to process in a parameter by
separating the names with “+”. Conversely, it is possible to specify units that are not to
be processed, separated by “-”. When a unit is subtracted from the unit list, it is never
processed even if it is included via the recursive option, and all its child and separate units
are also excluded. This is convenient to avoid processing reusable components, that are not
part of a project. For example, if you want to run AdaControl on itself, you should use the
following command:

adactl -f my_rules_file.aru -r adactl-asis-a4g

This applies the rules from the file my_rules_files.aru to AdaControl itself, but not
to units that are part of ASIS (units Asis, A4G, and their children) that would be found by
the “-r” (recursive) option otherwise.

Alternatively, it is possible to provide units indirectly with a parameter consisting of an
“@” followed by the name of a file. This file must contain a list of unit names (not files),
one on each line. Only the first “word” of the line is considered, i.e. everything after the
first blank is ignored. This can be useful to annotate unit names. All units whose names
are given in the file will be processed. If a name in the file starts with “@”, it will also be
treated as an indirect file (i.e. the same process will be invoked recursively). If a line in
the file starts with “#” or “--”, it is ignored. This can be useful to temporarily disable the
processing of some files or to add comments.

Ex:

adactl -f my_rules.aru @unit_file.txt

3.1.2 Commands

Commands specify which processing AdaControl should apply to units. See Chapter 4
[Command language reference], page 27 for a detailed description of all commands.

Chapter 3: Program Usage 12

Commands can be given directly on the command line with the “-l” option. A commands
list must be quoted with “"”.

Ex:

adactl pack.ads proc.adb -l "check instantiations (My_Generic);"

It is possible to pass several commands separated by “;”, but as a convenience to the
user, the last “;” may be omitted.

Commands can also be read from a file, whose name is given after the “-f” option (the
“.aru” extension is taken by default). As a special case, if the file name is “-”, commands
are read from the standard input. This is intended to allow AdaControl to be pipelined
behind something that generates commands; if you want to type commands directly to
AdaControl, the interactive mode is more appropriate. See Section 3.4 [Interactive mode],
page 15.

Ex:

adactl -f my_rules.aru proc.adb

Note that the “-l” and “-f” options are not exclusive: if both are specified, the commands
to be performed include those in the file (first) and then those given on the command line.

3.1.3 Output file

Messages produced by controls are output to the output file; by default, it is the standard
output, but it can be changed by specifying the “-o” option.

Ex:

adactl -f my_rules.aru -o my_output.txt proc.adb

If the output file exists, new messages are appended to it. This allows running AdaCon-
trol under several directories that make up the project, and gathering the results in a single
file. However, if the “-w” option is given, AdaControl overwrites the output file if it exists.

All other messages, including syntax error messages, units processed (in verbose mode),
and possible internal error mesages from AdaControl itself are output to the standard error
file.

3.1.4 Output format

The “-F” option selects the output format. It must be followed by “Gnat”, “Gnat Short”,
“CSV”, “CSV Short”, “Source”, “Source Short”, or “None” (case insensitive). By default,
the output is in “Gnat” format. See Section 4.2.1 [Control kinds and report messages],
page 28 for details.

The “-S” option selects which statistics are output after each run. It must be followed
by a value in the range 0..3. See Section 4.2.1 [Control kinds and report messages], page 28
for details on the various statistics levels.

The “-T” option prints a summary of timing at the end of each run. This indicates how
long (in real-time seconds) was spent in processing each rule.

Ex:

adactl -F CSV -S 2 -f my_rules.aru -o my_output.csv proc.adb

Chapter 3: Program Usage 13

3.1.5 Output limits

The “-m” and “-M” options are used to limit the output of AdaControl. These options are
followed by an integer value that specifies the maximum number of error messages (“-m”) or
warning and error messages (“-M”). If the value is omitted, a previous limitation (comming
for example from a command file) is cancelled.

If the indicated number of messages is exceeded during a run, AdaControl stops imme-
diately.

3.1.6 Project files

An emacs project file (the file with a “.adp” extension used by the Ada mode of Emacs) can
be specified with the “ -p” option. AdaControl will automatically consider all the directories
mentioned in “src dir” lines from the project file.

Ex:

adactl -f my_rules.aru -p proj.adp proc.adb

Note that AdaControl does not accept “.gpr” project files, because ASIS does not cur-
rently accept the “-P” option like other GNAT commands do. However, when run from
GPS, the interface will automatically use the source directories from the current (root)
project (unless you have explicitely set a “.adp” file in the switches Section 3.6.3 [AdaCon-
trol switches], page 19).

If you have a project that uses “.gpr” project files and you want to run AdaControl from
the command line (not from GPS), you can generate a “.adp” project file from a “.gpr”
project file from within GPS, by using the “Tools/AdaControl/Generate .adp project”
menu. See Section 3.6 [Running AdaControl from GPS], page 17. Alternatively, it is
also possible to use GPS project files by generating the tree files manually. see Section 3.9.2
[Generating tree files manually], page 25 for details.

3.1.7 Local disabling control

The “-i” option tells AdaControl to ignore disabling markers in Ada source code (see
Section 4.2.4 [Disabling controls], page 30); i.e. all controls will be performed, regard-
less of the presence of disabling markers. This is equivalent to the command “set ignore

ON;”. Note that if you you have many messages, setting this option can speed-up AdaCon-
trol considerably. It is therefore advisable to always set this option when you know that
there is no disabling marker in your source code.

The “-j” option tells AdaControl to invert the meaning of disabling markers, i.e. only
messages marked as disabled will be printed. This is useful to check which messages have
been disabled. This is equivalent to the command “set ignore INVERTED;”.

3.1.8 Verbose and debug mode

In the default mode, AdaControl displays only messages from triggered controls. It is
possible to get more information with the verbose option (“-v”). In this mode, AdaControl
displays a a progress indicator and unit names as they are processed, and its global execution
time when it finishes. Note that the progress indicator includes an indication of the run
number if there are more than one “go” command.

The “-d” option enables debug mode. This mode provides more information in case of
an internal program error, and is of little interest for the casual user. Note that if you hit

Chapter 3: Program Usage 14

Ctrl-C in debug mode, AdaControl aborts with a message telling the currently active rule
and module. This can be useful if you suspect AdaControl to be stuck in an infinite loop.

In debug mode, AdaControl may also, in rare occasions (and only with some versions
of GNAT), display ASIS “bug boxes”; this does not mean that something went wrong with
the program, but simply that an ASIS failure was properly recovered by AdaControl.

Output of the messages printed by the “-d” option can be directed to a “trace” file
(instead of being printed to the standard error file). This is done by the “-t” option, which
must be followed by the file name. If the trace file exists, new messages are appended to it.

3.1.9 Treatment of warnings

The “-e” option tells AdaControl to treat warnings as errors, i.e. to report a return code
of 1 even if only “search” controls were triggered. See Section 3.2 [Return codes], page 14.
It does not change the messages however.

Conversely, the “-E” option tells AdaControl to not report warnings at all, i.e. only
errors are reported. However, if you ask for statistics, the number of warning messages is
still counted. See Section 4.2.1 [Control kinds and report messages], page 28.

3.1.10 Exit on error

If an internal error is encountered during the processing of a unit, AdaControl will continue
to process other units. However, if the “-x” option is given, AdaControl will stop on the
first error encountered. This option is mainly useful if you want to debug AdaControl itself
(or your own rules). See Section 3.10 [In case of trouble], page 26.

Ex:

adactl -x -f my_rules.aru proc.adb

3.1.11 ASIS options

Everything that appears on the command line after “--” will be treated as an ASIS option,
as described in the ASIS user manual.

Casual users don’t need to care about ASIS options, except in one case: if you are
running AdaControl from the command line (not from GPS), and if the units that you are
processing reference other units whose source is not in the same directory, AdaControl needs
to know how to access these units (as GNAT would). This can be done either by using
an Emacs project file with the “-p” option (see Section 3.1.6 [Project files], page 13), by
putting the appropriate directories into the ADA INCLUDE PATH environment variable,
or by passing “-I” options to ASIS.

It is possible to pass one or several “-I” options to ASIS, to provide other directories
where sources can be found. The syntax is the same as the “-I” option for GNAT.

Other ASIS options, like the “-Cx” and/or “-Fx” options, can be specified. Most users
can ignore this feature; however, specifying these options can improve the processing time
of big projects. See Section 3.9 [Optimizing Adacontrol], page 23.

3.2 Return codes

In order to ease the automation of controlling programs with shell scripts, AdaControl
returns various error codes depending on how successful it was. Values returned are:

Chapter 3: Program Usage 15

• 0: At most “search” controls (i.e. warnings) were triggered (no control at all with “-e”
option)

• 1: At least one “check” control (i.e. error) was triggered (or at least one “search” or
“check” control with “-e” option)

• 2: AdaControl was not run due to a syntax error in the rules or in the specification of
units.

• 10: There was an internal failure of AdaControl.

3.3 Environment variable and default settings

If the environment variable “ADACTLINI” is set, its content is taken as a set of commands
(separated by semi-colons) that are executed before any other command. Although any
command can be specified, this is intended to allow changing default settings with “set”
commands. See Section 4.3.6 [Set command], page 33.

For example, you can set ADACTLINI to “set format Gnat Short” if you prefer having
you messages in short format rather than the (default) long format.

3.4 Interactive mode

The “-I” option tells AdaControl to operate interactively. In this mode, commands specified
with “-l” or “-f” options are first processed, then AdaControl prompts for commands on
the terminal. Note that the “quit” command (see Section 4.3.2 [Quit command], page 32)
is used to terminate AdaControl.

The syntax of commands run interactively is exactly the same as the one used for files;
especially, each command must be terminated with a “;”. Note that the prompt (“Com-
mand:”) becomes “.......:” when AdaControl requires more input because a command is not
completely given, and especially if you forget the final “;”.

As with files, it is possible to give several commands on a single line in interactive mode.
If a command contains syntax errors, all “go” commands (see Section 4.3.1 [Go command],
page 32) on the same line are temporarily disabled. Other commands that do not have
errors are normally processed however.

The interactive mode is useful when you want to do some analysis of your code, but
don’t know beforehand what you want to control. Since the ASIS context is open only once
when the program is loaded, queries will be much faster than running AdaControl entirely
with a new query given in a “-l” option each time. It is also useful to experiment with
AdaControl, and to check interactively commands before putting them into a file.

3.5 Other execution modes

In addition to normal usage, AdaControl features special options to ease its use; no Ada
unit is analyzed when using these options.

3.5.1 Getting help

The “-h” option provides help about Adacontrol usage. If the “-h” option is given, no other
option is analyzed and no further processing happens.

Syntax:

Chapter 3: Program Usage 16

adactl -h [<keyword> | <rule name> | variables ["<pattern>"] ...]

<keyword> ::= all | commands | license | list | options | rules | version

The “-h” option without parameter displays a help message about usage of the AdaCon-
trol program, the various options, and the rule names.

Otherwise, the “-h” must be followed by one or several keywords or rule names (case
irrelevant); its effect is:

• <rule name>: if <rule name> is exactly the name of rule, display the help message
for the indicated rule. Otherwise, <rule name> is interpreted as a pattern, and help
messages for all rules that match the pattern is displayed. Patterns are given using
the full Regexp syntax. see Appendix B [Syntax of regular expressions], page 149 for
details.

• “variables” lists the values of all variables whose name matches <pattern>, or all vari-
ables if there is no <pattern>. Patterns are given using the full Regexp syntax. see
Appendix B [Syntax of regular expressions], page 149 for details.

• “all”: display the help message for all rules.

• “commands”: display a summary of all commands

• “license”: display the license information

• “list”: display the names of all rules (note that “rules” also displays the list of rules, in
a prettier format; the “list” option is mainly useful for the integration of AdaControl
into GPS).

• “options”: display help about the command-line options

• “rules”: display the names of all rules.

• “version”: display AdaControl and ASIS implementation version numbers.

Ex:

adactl -h pragmas Unnecessary_Use_Clause

adactl -h all

adactl -h version license

adactl -h stat

Note in the last example that “stat” is not the name of a rule; it is therefore interpreted
as a pattern, and help will be displayed for all rules that include the string “stat” in their
name. This can be very convenient to retrieve the name of a rule if you don’t remember
exactly how it is spelled.

3.5.2 Checking commands syntax

The “-C” option is used to check syntax of commands without executing any control.

Syntax:

adactl -C [-dv] [-f <rules file>] [-l <rules list>]

In this mode, AdaControl simply checks the syntax of the commands provided with the
“-l” option, or of the commands provided in the file named by the “-f” option (at least one
of these options must be provided). No other processing will happen.

AdaControl will exit with a return code of 0 if the syntax is correct, and 2 if any errors
are found. A confirming message that no errors were found is output if the “-v” option is
given.

Chapter 3: Program Usage 17

This option is especially useful when you have modified a rules file, before trying it
on many units. The way AdaControl works, it must open the ASIS context (a lengthy
operation) before analyzing the rules. This option can therefore save a lot of time if the
rules file contains errors.

3.5.3 Generating a units list

The “-D” options produces a list of units that can be reused as an indirect file in later runs.
Syntax:

adactl -D [-rsvw] [-o <output file>] [-p <project file>]

{<unit>[+|-<unit>]|[@]<file>} [-- <ASIS options>]

In this mode, AdaControl outputs the list of units that would be processed. It is espe-
cially useful when used with the “-r” option and given the main unit name, since it will
then generate the whole list of dependent units (hence the name “D”).

This list can be directed to a file with the “-o” option (if the file exists, it won’t be
overwritten unless the “-w” option is specified). This file can then be used in an indirect
list of units. See Section 3.1.1 [Input units], page 10. Note that it is more efficient to create
the list of units once and then use the indirect file than to specify all applicable units or
use the “-r” option each time AdaControl is run.

3.6 Running AdaControl from GPS

If you want to use AdaControl from GPS, make sure you have copied the necessary files
into the required places. See Section 2.2 [Installing AdaControl], page 9.

AdaControl integrates nicely into GPS, making it even easier to use. It can be launched
from menu commands, and parameters can be set like any other GPS project parameters.
When run from within GPS, AdaControl will automatically retrieve all needed directories
from the current GPS project.

After running AdaControl, the “locations” panel will open, and you can retrieve the
locations of errors from there, just like with a regular compilation. Errors will be marked
in red in the source, warning will be marked orange, and you will have corresponding
marks showing the places of errors and warnings in the speedbar. Note that AdaControl
errors appear under the “AdaControl” category, but if there were compilation errors, they
will appear under the “Compilation” category. Final counts from “count” control kinds
will appear under the “Counts summary” category, and statistics under the “Statistics”
category.

3.6.1 The AdaControl menu and buttons

GPS now features an “AdaControl” menu, with several submenus:

• “Control Current File (rules file)” runs AdaControl on the currently edited file, with
rules taken from the current rules file; this menu is greyed-out if no rules file is defined,
if no file window is currently active, or if the associated language is not “Ada”. The
name of the rules file can be set from the “Library” tab from the “Project/Edit Project
Properties” menu.

• “Control Root Project (rules file)” runs AdaControl on all units that are part of the
root project, with rules taken from the current rules file; this menu is greyed-out if no

Chapter 3: Program Usage 18

rules file is defined. The name of the rules file can be set from the “Library” tab from
the “Project/Edit Project Properties” menu.

• “Control Units from List (rules file)” runs AdaControls on units given in a indirect file,
with rules taken from the current rules file. This menu is greyed-out if no rules file is
defined or if no indirect file is defined. The name of the rules file and of the indirect file
can be set from the “Library” tab from the “Project/Edit Project Properties” menu.

• “Control Current File (interactive)” runs AdaControl on the currently edited file, with
a rule asked interactively from a pop-up; this menu is greyed-out if no file window is
currently active, or if the associated language is not “Ada”.

• “Control Root Project (interactive)” runs AdaControl on all units that are part of the
root project, with a rule asked interactively from a pop-up.

• “Control Units from List (interactive)” runs AdaControls on units given in a indirect
file, with a rule asked interactively from a pop-up. This menu is greyed-out if no
indirect file is defined. The name of the indirect file can be set from the “Library” tab
from the “Project/Edit Project Properties” menu.

• “Check Rules File” checks the syntax of the current rules file. This menu is deactivated
if the current window does not contain an AdaControl rules file.

• “Open Rules File” opens the rules file. This menu is deactivated if there is no current
rules file defined.

• “Open Units File” opens the units file. This menu is deactivated if there is no current
units file defined.

• “Create units file” creates a text file containing all units (not files) names from the
current root project. This file is appropriate as an indirect file for the “... from list”
commands.

• “Create .adp project” creates an Emacs-style project file from the current GPS project,
which can be used with the “-p” option if you want to run AdaControl from the
command line. This file has the same name as the current GPS project, with a “.adp”
extension. See Section 3.1.6 [Project files], page 13.

• “Delete Tree Files” removes existing tree files from the current directory. This is
convenient when AdaControl complains that the tree files are not up-to-date. Note
that you can set the preferences for automatic deletion of tree files after each run (see
below). Note that the name of this menu is changed to “Delete Tree and .ali Files” if
you have chosen to delete .ali files in the preferences (see below).

• “Load results file” loads in the location window the result file obtained from a previous
run of AdaControl. The file must have been produced with the “Gnat” or “Gnat Short”
format. See Section 4.2.1 [Control kinds and report messages], page 28.

There are also two buttons representing Lady Ada in a magnifier glass in the toolbar,
one with a red question mark in the background. These buttons launch AdaControl, by
default on the file currently being edited; however, you can change this behaviour from
the preferences to control either files from a list, or all files from the project. The button
without the question mark uses rules from the current rules file, while the one with the
question mark asks for the control to apply interactively.

Here are some tips about using the “interactive” menus (or the button with the question
mark):

Chapter 3: Program Usage 19

• When you use the “interactive” menus several times, the previously entered com-
mand(s) is used as a default.

• You can enter any command from AdaControl’s language in the dialog; you can even
enter several commands separated by “;”.

• Especially, if you want to run AdaControl with a rules file that is not the one defined
by the switches, you can use one of the “interactive” commands, and give “source <file
name>” as the command.

3.6.2 Contextual menu

AdaControl adds two entries to the contextual menus (right click) of Ada files. They call
the pfni utility on the current entity. See Section 3.8.1 [pfni], page 22. The entry “Print
full name” displays the full name of the entity in simple form, while the entry “Print full
name (with overloading)”) prints it with overloading information. If the name refers to
an entity which is initialized (or to a parameter with a default value), the initial value is
printed. If the entity is a discrete type, its range is printed. If the entity is an array type,
the ranges of its indices are printed.

This is convenient to find how to name entities in rule files. See Appendix A [Specifying
an Ada entity name], page 145. It is also convenient to find where an entity is declared,
and which of several overloaded entities is being referred to.

This is also convenient to find the actual value of a constant from anywhere in the
program text, since the printed value is completely evaluated if it is a (static) expression.

3.6.3 AdaControl switches

The tab “switches” from the “Project/Edit Project Properties” menu includes a page for
AdaControl, which allows you to set various parameters. Since the GPS interface analyzes
the output of AdaControl, you should not set options directly in the bottom window of this
page (the one that displays the actual options passed to AdaControl).

3.6.3.1 Files

This section controls the definition of various files used by AdaControl.

• “Rules file”. This is the name of a file that contains the definition of the controls to be
applied to your project. This file is required for all “control (rules file)” commands.

• “Units file”. This is the name of a file that contains the list of units to be controlled.
This file is required for all “control from list” commands.

• “.adp project file”. This is the name of an emacs project file (.adp). If this name is not
empty, AdaControl will use it instead of providing all libraries as “-I” options on the
command line. This may be necessary if you have many libraries and the command
line that launches AdaControl becomes too long. Note that this file can be created
using the “AdaControl/Create .adp project” menu.

3.6.3.2 Processing

This section offers options that control how units are processed.

• “Recursive mode”. This sets the “-r” option. See Section 3.1.1 [Input units], page 10.

• “Ignore local deactivation”. This sets the “-i” option. See Section 3.1.7 [Local disabling
control], page 13.

Chapter 3: Program Usage 20

• “Process specs only”. This sets the “-s” option. See Section 3.1.1 [Input units], page 10.

• “Compilation unit mode”. This sets the “-u” option. See Section 3.1.1 [Input units],
page 10.

3.6.3.3 Debug

This section controls the debugging options of AdaControl.

• “Debug messages”. This sets the “-d” option. See Section 3.1.8 [Verbose and debug
mode], page 13.

• “Halt on error”. This sets the “-x” option. See Section 3.1.10 [Exit on error], page 14.

3.6.3.4 Output

This section offers options that control where and how the output of AdaControl is displayed.

• “Display only errors”. This sets the “-E” option. See Section 3.1.9 [Treatment of
warnings], page 14.

• “Warnings as errors”. This sets the “-e” option. See Section 3.1.9 [Treatment of
warnings], page 14.

• “Statistics”. This sets the “-S” option from a pull-down menu. See Section 4.2.1
[Control kinds and report messages], page 28.

• “Send results to GPS”. When checked (default), the output of AdaControl is sent to
the “locations” window of GPS.

• “Send results to File”. When checked, the output of AdaControl is sent to the file
indicated in the box below.

• “Send results to File and GPS”. When checked, the output of AdaControl is sent to
the file indicated in the box below, and the content of the file is then automatically
reloaded in the “locations” window of GPS. If this option is set, the file format is always
“Gnat” (the file format option is ignored).

• “File name”. This is the name of the file that will contain the results when sent to
“File” or “File and GPS”. If the results are sent to “File” and the file exists, AdaControl
will ask for the permission to overwrite it. If the results are sent to “File and GPS”,
the result file is always overriden without asking.

• “File format”. This is a pull-down menu that allows you to select the desired format
when output is directed to a file (“-F” option). See Section 4.2.1 [Control kinds and
report messages], page 28.

3.6.3.5 ASIS

This section controls the ASIS parameters passed to AdaControl. The content of the input
field “ASIS options” is used in place of the standard (“-CA -FM”) one.

Casual users don’t need to change the default ASIS options. For more details, see
Section 3.1.11 [ASIS options], page 14.

3.6.4 AdaControl preferences

There is an entry for AdaControl in the “edit/preferences” menu:

• “delete trees”. If this box is checked, tree files are automatically deleted after each run of
AdaControl. This avoids having problems with out-of-date tree files, at the expanse of

Chapter 3: Program Usage 21

slightly slowing down AdaControl if you run it several times in a row without changing
the source files.

• “Delete .ali files with tree files”. If this box is checked, the “.ali” files in the current
directory will also be deleted together with the tree files (either automatically if the
previous box is checked, or when the “AdaControl/Delete Tree Files” menu is selected).
This is normally what you want, unless the current directory is also used as the object
directory for compilations; in the latter case, deleting “.ali” files would cause a full
recompilation for the next build of the project.

• “Help on rule”. This allows you to select how rule specific help (from the
“Help/AdaControl/Help on rule” menu) is displayed. If you select “Pop-up”, a
summary of the rule’s purpose and syntax is displayed in a pop-up. If you select
“User Guide”, the user guide opens in a browser at the page that explains the rule.
(Caveat: due to a problem in GPS under Windows, the “User Guide” option may not
work at all, or the browser will not find the right anchor; hopefully, this will be fixed
in an upcomming release of GPS. No such problem under Linux).

• “Use separate categories”. If this box is checked, there will be one category (i.e. tree
in the locations window) for each rule type or label, otherwise all messages will be
grouped under the single category “AdaControl”. In practice, this means that with
the box checked, messages will be sorted by rules first, then by files, while otherwise,
the messages will be sorted by files first, then by rules. In any case, compilation errors
appear under the “Compilation” category, final counts under the “Counts summary”
category, and statistics under the “Statistics” category.

• “Auto save files”. If this box is checked, all modified files are automatically saved
without asking before running AdaControl. Otherwise, a dialog appears allowing the
user to choose which files to save.

• “Buttons operate on”. This defines the behaviour of the buttons. If “Current File” is
selected, the buttons operate on the file being currently edited. If “Root Project” is
selected, the buttons operate on all files that are part of the current project. If “Units
from List” is selected, the buttons operate on all units from the units file.

• “Display AdaControl run”. If this box is checked, the command line used to launch
AdaControl and the output messages are displayed in the “Messages” window.

• “Max allowed error messages”. If non zero, run will stop if the number of error messages
exceeds this limit. See Section 3.1.5 [Output limits], page 13.

• “Max allowed messages (all kinds)”. If non zero, run will stop if the number of error
and warning messages exceeds this limit. See Section 3.1.5 [Output limits], page 13.

3.6.5 AdaControl language

If you check “AdaControl” in the “Languages” tab, GPS will recognize files with extension
.aru as AdaControl rules files, and provide appropriate colorization.

3.6.6 AdaControl help

The AdaControl User Manual (this manual) and the AdaControl Programmer Manual are
available from the "Help/AdaControl" menu of GPS.

The "Help on rule" entry displays the list of all rules; if you click on one of them, you get
help for the particular rule. Depending on the setting of the “Help on rule” preference (see

Chapter 3: Program Usage 22

above), it opens a pop-up that displays the rule(s) purpose and the syntax of its parameters,
or opens the user guide at the appropriate location.

The “About” entry displays a popup with AdaControl’s version number and license
condition.

3.6.7 Caveat

GPS may crash when the output of a command is too big (i.e. hundreds of messages with
AdaControl). If this happens, use the “preferences” menu to limit the number of messages.

3.7 Running AdaControl from AdaGide

If you want to use AdaControl from AdaGide, make sure you have copied the necessary file
into the required place. See Section 2.2 [Installing AdaControl], page 9. Note that AdaGide
does not have all the parameterization facilities of sophisticated environments like GPS, but
all AdaControl options, like the name of the rules file or the output format, can easily be
changed by editing the tool description file AdaControl.tdf.

AdaGide now features several AdaControl commands from the “tool” menu:

• “AdaControl” runs AdaControl on the currently edited file, with rules taken from the
file named verif.aru.

• “AdaControl recursive” works like the previous command, with the addition of the “-r”
(recursive) option. When used on the main program, it will analyze the whole set of
compilation units in the program.

• “AdaControl interactive” runs AdaControl on the currently edited file, with a rule
asked interactively from a pop-up.

• “AdaControl: delete .adt” removes existing tree files from the current directory. This
is convenient when AdaControl complains that the tree files are not up-to-date.

3.8 Helpful utilities

This section describe utilities that are handy to use in conjunction with AdaControl.

3.8.1 pfni

The convention used to refer to entities (as described in Appendix A [Specifying an Ada
entity name], page 145) is very powerful, but it may be difficult to spell out correctly the
name of some entities, especially when using the overloaded syntax.

pfni (which stands for Print Full Name Image) can be used to get the correct spelling
for any Ada entity. The syntax of pfni is:

pfni [-sofdq] [-p <project-file>] <unit>[:]

[-- <ASIS options>]

 ::= <line_number>

| [<first_line>]-[<last_line>]

| <line_number>:<column_number>

or

pfni -h

If called with the “-h” option, pfni prints a help message and exits.

Chapter 3: Program Usage 23

Otherwise, pfni prints the full name image of all identifiers declared in the indicated
unit, unless there is a “-f” (full) option, in which case it prints the full name image of all
identifiers (i.e. including those that are used, but not declared, in the unit). The image is
printed without overloading information, unless the “-o” option is given.

In addition, pfni prints the initial value of variables if there is one, the range of discrete
types, and the range of the indices of array types.

The <unit> is given either as an Ada unit, or as a file name, provided the extension is
“.ads” or “.adb” (as in AdaControl). If a span is given, only identifiers within the span are
printed. In the first form, the span includes only the indicated line; in the second form, the
span includes all lines from <first line> to <last line> (if omitted, they are taken as the first
and last line of the file, respectively). In the third form, the span includes only the place
at the specified <line number> and <column number>.

Normally, the source line corresponding to the names is printed above the names. The
“-q” (quiet) option suppresses this.

If the “-s” option is given (or the unit is a file name with a “.ads” extension), the
specification of the unit is processed, otherwise the body is processed. The “-p” option
specifies the name of an Emacs project file, and the “-d” option is the debug mode, as for
AdaControl itself. ASIS options can be passed, like for AdaControl, after a “--” (but -FS
is the default). See Section 3.1.11 [ASIS options], page 14.

As a side usage of pfni, if you are calling a subprogram that has several overloadings
and you are not sure which one is called, use pfni with the “-o” option on that line: the
program will tell you the full name and profile of the called subprogram.

3.8.2 makepat.sed

This file (provided in the “src” directory) is a sed script that transforms a text file into
a set of correponding regular expressions. It is useful to generate model header files. See
Section 5.21 [Header Comments], page 74.

3.8.3 unrepr.sed

This file (provided in the “src” directory) is a sed script that comments out all representation
clauses. It is typically useful if you use a different compiler that accepts representation
clauses not supported by GNAT.

Typically, you would copy all your sources in a different directory, copy “unrepr.sed” in
that directory, then run:

sed -i -f unrepr.sed *.ads *.adb

You can now run AdaControl on the patched files. Of course, you won’t be able to check
rules related to representation clauses any more...

Note that the script adds “--UNREPR ” to all representation clauses. Its effect can thus
easily be undone with the following commad:

sed -i -e "s/--UNREPR //" *.ads *.adb

3.9 Optimizing Adacontrol

There are many factors that may influence dramatically the speed of AdaControl when
processing many units. For example, on our canonical test (same controls, same units), the

Chapter 3: Program Usage 24

extreme points for execution time were 111s. vs 13s.! Unfortunately, this seems to depend
on a number of parameters that are beyond AdaControl’s control, like the relative speed of
the CPU to the speed of the hard-disk, or the caching strategy of the file system.

This section will give some hints that may help you increase the speed of AdaControl, but
it will not change the output of the program; you don’t really need to read it if you just use
AdaControl occasionnally. This section is concerned only with the GNAT implementation
of ASIS; other implementations work differently.

Bear in mind that the best strategy depends heavily on how your program is organized,
and on the particular OS and hardware you are using. Therefore, no general rule can be
given, you’ll have to experiment yourself. Hint: if you specify the “-v” option to AdaControl,
it will print in the end the elapsed time for running the tests; this is very helpful to make
timing comparisons.

Note: all options described in this section are ASIS options, i.e. they must appear last
on the command line, after a “--”.

3.9.1 Tree files and the ASIS context

Since AdaControl is an ASIS application, it is useful to explain here how ASIS works. ASIS
(and therefore AdaControl) works on a set of units constituting a “context”. Any reference
to an Ada entity which is not in the context (nor automatically added, see below) will be
ignored; especially, if you specify to AdaControl the name of a unit which is not included
in the current context, the unit will simply not be processed.

ASIS works by exploring tree files (same name as the corresponding Ada unit, with
a “.adt” extension), which are “predigested” views of the corresponding Ada units. By
default, the tree files are generated automatically when needed, and kept after each run, so
that subsequent runs do not have to recreate them.

A context in ASIS-for-Gnat is a set of tree files. Which trees are part of the context is
defined by the “-C” option:

• -C1 Only one tree makes up the context. The name of the tree file must follow the
option.

• -CN Several explicit trees make up the context. The name of the tree files must follow
the option.

• -CA All available trees make up the context. These are the tree files found in the
current directory, and in any directory given with a “-T” option (which works like the
“-I” option, but for tree files instead of source files).

The “-F” option specifies what to do if the program tries to access an Ada unit which is
not part of the context:

• -FT Only consider tree files, do not attempt to compile units on-the-fly

• -FS Always compile units on-the-fly, ignore existing tree files

• -FM Compile on-the-fly units for which there is no already existing tree file

Note that “-FT” is the only allowed mode, and must be specified, with the “-C1” and
“-CN” options.

The default combination used by AdaControl is “-CA -FM”.

Chapter 3: Program Usage 25

3.9.2 Generating tree files manually

It is also possible to generate the tree files manually before running AdaControl. Although
this mode of operation is less practical, it is recommended by AdaCore for any ASIS tool
that deals with many compilation units. Some reasons why you might want to generate the
tree files manually are:

• Your project uses GNAT project files, but you don’t want to run AdaControl from
GPS;

• Your project has several source directories (ASIS had problems with
ADA INCLUDE PATH, until releases dated later than Sept. 1st, 2006).
Note that an alternative solution is to specify source directories with the -I option;

• It is faster to generate tree files once than to use “compile on the fly” mode.

To generate tree files manually, simply recompile your project with the “-gnatct” option.
This option can be passed to gnatmake normally. Of course, you will need all other options
needed by your project (like the “-P” option if you are using GNAT project files).

Tree files may be copied into a different directory if you don’t want your current directory
to be cluttered by them. In this case, use the “-T” ASIS option to indicate the directory
where the tree files are located.

If you chose to generate the tree files manually, you may want to specify the “-FT” ASIS
option (see above) to prevent from accidental automatic recompilation.

3.9.3 Choosing an appropriate combination of options

In order to optimize the use of AdaControl, it is important to remember that reading tree
files is a time-consuming operation. On the other hand, a single tree file contains not only
information for the corresponding unit, but also for the specifications of all units that the
given unit depends on. Moreover, our measures showed that reading an existing tree file
may be slower than compiling the corresponding unit on-the-fly (but once again, YMMV).

Here are some hints to help you find the most efficient combination of options.

• If you want to run AdaControl on all units of your program, use the “-D” option to
create a file containing the list of all required units, then use this file as an indirect file.
Using the the “-r” option (recursive mode) of AdaControl implies an extra pass over
the whole program tree to determine the necessary units.

• If you have not disabled any rule (and have many messages), specifying the “-i” option
(ignore disabling) saves AdaControl the burden of checking whether rules are disabled,
which can result in a sensible speed-up.

• Avoid having unnecessary tree files. All tree files in the context are read by ASIS, even
if they are not later used. If you don’t want to run AdaControl on the whole project,
deleting tree files from a previous run can save a lot of time.

• When using an indirect file, the order in which units are given may influence the speed
of the program. As a rule of thumb, units that are closely related should appear close
to each other in the file. A good starting point is to sort the file in alphabetical order:
this way, child units will appear immediately after their parent. You can then reorder
units, and measure if it has a significant effect on speed.

• If you want to check a unit individually, try using the “-C1” option (especially if the
current directory contains many tree files from previous runs). Remember that you

Chapter 3: Program Usage 26

must specify the unit to check to AdaControl, and the tree file to ASIS. I.e., if you
want to check the unit “Example”, the command line should look like:

adactl -f rules_file.aru example -- -FT -C1 example.adt

provided the tree file already exists.

• For each strategy, first run AdaControl with the default options (which will create all
necessary tree files). Compare execution time with the one you get with “-FT” and
“-FS”. This will tell you if compiling on-the-fly is more efficient than loading tree files,
or not.

3.10 In case of trouble

3.10.1 Known issues

If you are using an old version of GNAT and your project includes source files located in
several directories, the ADA INCLUDE PATH environment variable may not be considered
by ASIS, resulting in error messages that tell you that the bodies of some units have not
been found (and hence have not been processed). This problem has been fixed in GNAT
dated later than Sept. 1st, 2006. If this happens, either provide your source directories as
“-I” options (see Section 3.1.11 [ASIS options], page 14), or generate the tree files manually
(see Section 3.9.2 [Generating tree files manually], page 25). Note that this problem does
not happen if you are using Emacs project files (see Section 3.1.6 [Project files], page 13),
nor if you are running AdaControl from GPS.

3.10.2 AdaControl or ASIS failure

Like any sophisticated piece of software, AdaControl may fail when encountering some
special case of construct. ASIS may also fail occasionnally; actually, we discovered several
ASIS bugs during the development of AdaControl. These were reported to ACT, and have
been corrected in the wavefront version of GNAT - but you may be using an earlier version.
In this case, try to upgrade to a newer version of ASIS. If an AdaControl or ASIS problem is
not yet solved, AdaControl is designed in such a way that an occasionnal bug won’t prevent
you from using it.

If AdaControl detects an unexpected exception during the processing of a unit (an ASIS
error or an internal error), it will abandon the unit, clean up everything, and go on processing
the remaining units. This way, an error due to a special case in a unit will not affect the
processing of other units. AdaControl will return a Status of 10 in this case.

However, if it is run with the “-x” option (eXit on error), it will stop immediately, and
no further processing will happen.

If you don’t want the garbage from a failing rule to pollute your report, you may chose
to disable the rule for the unit that has a problem. See Section 4.3.8 [Inhibit command],
page 35.

If you encounter a problem while using AdaControl, you are very welcome to report
it through our Mantis bug tracking system (under Windows, you can click on “Report
problem” in the AdaControl Start menu). Please include the exact control and the unit
that caused the problem, as well as the captured output of the program (with “-dx” option).

https://sourceforge.net/apps/mantisbt/adacontrol/my_view_page.php

Chapter 4: Command language reference 27

4 Command language reference

AdaControl is about controlling rules. Rules are built in AdaControl; each rule has a name,
and may require parameters. For the complete description of each rule, see Chapter 5 [Rules
reference], page 37.

To run AdaControl, you need to define which rules you want to apply to your Ada units,
what are the parameters, etc. In addition, you may want to define various things, like the
file where the results should go, the output format, etc.

AdaControl defines a small command language which is used to describe how you want
to process your units. Commands can be specified either on the command line or in a file,
that we call here a rules file. Commands can also be given interactively; See Section 3.4
[Interactive mode], page 15.

4.1 General

The command language is not case-sensitive, i.e. the case of the keywords, rule names, and
parameters is not significant. The layout of commands is free (i.e. a command can extend
over several lines, and spaces are freely allowed between syntactic elements).

Comments are allowed in and between commands. Comments begin with a “#” or a
“--”, and extend to the end of the line.

Since wide characters are allowed in Ada programs, AdaControl accepts wide charac-
ters in commands as well. With GNAT, the encoding scheme is Hex ESC encoding (see
the GNAT User-Guide/Reference-Manual). This is the prefered method, since few people
require wide characters in programs anyway, and that keeping the default bracket encoding
would not conveniently allow brackets for regular expressions, like those used by some rules.
See Appendix B [Syntax of regular expressions], page 149.

If a syntax error is encountered in a command, an appropriate error message is output,
and analysis of the rules file continues in order to output all errors, but no analysis of user
code will be performed.

4.2 Controls

A control command is a command that declares one (or several) controls. A control defines
how a rule is applied to Ada units. The syntax of a control command is as follows:

<control_command> ::= [<label> ":"] <control> {"," <control>} ";"

<control> ::= <ctrl_kind> <Rule_Name> [<parameters>]

<parameters ::= "(" [<modifiers>] <value> {"," [<modifiers>] <value>} ")"

<ctrl_kind> ::= "check"|"search"|"count"

If present, the label gives a name to the control(s); it will be printed whenever each
control is activated, and can be used to disable the control(s). See Section 4.2.4 [Disabling
controls], page 30. If no label is present, the rule name is printed instead. The label must
have the syntax of an Ada identifier, or else the label must be included within double quotes
("), in which case it can contain any character.

Each control consists of a <ctrl kind> followed by a rule name, and (optionally) param-
eters. Some parameters may be preceded by modifiers (such as “not” or “case sensitive”).
The meaning of the rule parameters and modifiers depends on the rule.

Chapter 4: Command language reference 28

Here are some examples of commands:

check unnecessary_use_clause;

All_Imports: search pragmas (Import);

"Why do you need that?": check entities (Unchecked_Conversion,

all ’Address);

Specifying several controls with the same label is a shorthand which is equivalent to
specifying the same label for several controls. It is handy when the label is long, and/or to
stress that several controls are part of the same programming rule. For example:

"Check why this obsolete stuff is still used":

check entities (obsolete_unit_1), -- Note comma here!

check instantiations (some_obsolete_generic);

4.2.1 Control kinds and report messages

There are three control kinds: “check”, “search”, and “count”.

“Check” is intended to search for rules that must be obeyed in your programs. Normally,
if a “Check” control fails, you should fix the program. “Search” is intended to report some
situations, but you should consider what to do on a case-by-case basis. Roughly, use “check”
when you consider that the failure of the control is an error, and “search” when you consider
it as a warning. AdaControl will exit with a status of 1 if any “Check” control is triggered,
and a status of 0 if only “Search” controls were triggered (or no control was triggered at
all).

“Count” works like “Search”, but instead of printing a message for each control which is
triggered, it simply counts occurrences and prints a summary at the end of the run. There
is a separate count for each control label (or if no label is given, the rule name is taken
instead); if you give the same label to different controls, this allows you to accumulate the
counts.

A report message (except for the final report of “count”) comprises the following ele-
ments:

• the file name (where the control matches)

• the line number (where the control matches)

• the column number (where the control matches)

• the label (if there is one) and/or the rule name (the rule that matches).

• a message (why the control matches). A control whose kind is “check” will produce an
error report message (i.e. containing the keyword “Error”) and a control whose kind is
“search” will produce a found report message (i.e. containing the keyword “Found”).

The formatting of the report message depends on the format option, which can be
selected with the “-F” command-line option or the “set format” command.

If the format is “Gnat” (the default) or “Gnat Short”, items are separated by ’:’; this
is the same format as the one used by GNAT error messages. Editors (like Emacs or GPS)
that recognize this format allow you to go directly to the place of the message by clicking
on it. In order to avoid too long messages, only the label appears, unless there is none, in
which case it is replaced with the rule name.

If the format is “CSV” or “CSV Short”, items are separated by ’,’ and surrounded by
double quotes. This is the “Comma Separated Values” format, which can be read by any

Chapter 4: Command language reference 29

known spreadsheet program, except Excel(tm) by default, which uses the semicolon and
not the comma to separate fields. Therefore, the formats “CSVX” and “CSVX Short” do
the same thing, but using semi-colons (’;’) instead of commas. Both the label (replaced by
an empty column if there is none) and the rule name appear. Note that when an output
file is created in one of the “CSV” formats, a title line is issued as the first line, following
normal CSV convention.

If the format is “Source” or “Source Short”, the offending source line is output, and the
message is output behind it, with a “!” pointing to the exact location of the problem.

If the format is “None”, no error message is output at all. This is useful when only the
return code of running AdaControl is desired (just to check if a program is OK or not).
Note that this does not prevent the output of statistics, since these are under control of the
“-S” option or the “set statistics” command. In this case, statistics are output in CSVX
format, since asking for statistics with a “none” format is mainly useful for analysing the
statistics with a spreadsheet program.

With recent versions of GNAT, the file name includes the full path of the source file. If
the “ Short” form of the format option is used, the file name is stripped from any path.
This can make it easier to compare the results of controlling units from various directories.
Note that with older versions of GNAT, the file name never includes the full path, and the
“ Short” form of the format option has no effect.

After each run (see Section 4.3.1 [Go command], page 32), statistics may be output,
depending on the statistics level which is set with the “-S” option or the “set statistics”
command. The meaning of the various levels is as follows:

• 0: No statistics are output (default)

• 1: A count of error and warning messages is output

• 2: The rule name and label (if any) of any control not triggered are output

• 3: The rule name and label (if any) of every control is output, together with a count
of each triggering kind (“check”, “search”, “count”), or “not triggered” if the control
was not triggered.

4.2.2 Parameters

Most rules accept parameters. Parameters can be:

• a keyword for the rule

• a numerical value

• a character string (often a regular expression)

• an Ada entity name

A numerical value is given with the syntax of an Ada integer or real literal (underscores
and exponents are allowed as in Ada). Based literals are supported for integer values; if
somebody can justify a need for supporting them for reals, we’ll be happy to add this feature
later...

A character string is given within double quotes “"”. As usual, quotes appearing within
the string are doubled. The tilde character (“~”) can be used as a replacement delimiter,
but the same character must be used at both ends of the string. The latter has been chosen
as a character not used by the various shells, and can be useful to pass quoted strings from

Chapter 4: Command language reference 30

parameters on the command line (unfortunately, we could not use the percent (“%”) sign,
because it plays a special role in DOS/Windows).

An Ada entity name is the full name (prefixed with the names of all units that include
it) of something declared in a program. It can be followed by overloading information, in
order to uniquely identify the Ada entity. If an Ada entity is overloaded and no overloading
information is provided, the rule is applied to all (overloaded) Ada entities that match the
name. Alternatively, it can be “all” followed by a simple name, in wich case it applies to
all entities with that name. See Appendix A [Specifying an Ada entity name], page 145 for
the full description of the syntax. Here are some examples of entity names:

Ada.Text_IO.Put -- All Put defined in Ada.Text_IO

Ada.Text_IO.Put{Standard.Character} -- The Put on Character

all Put -- All Put

Standard.Integer’Image -- The ’Image function on Integer

all ’Image -- All ’Image functions

4.2.3 Multiple controls

Most rules can be used in more than one control (with different parameters). There is no
difference between a single or a multiple configuration rule use: outputs, efficiency, etc. are
the same.

The following rules files produce an identical configuration:

Search Pragmas (Pure, Elaborate_All);

and

Search Pragmas (Pure);

Search Pragmas (Elaborate_All);

However, the second form can be used to give different labels. Consider:

Search Pragmas (Pure);

No_Elaborate: Search Pragmas (Elaborate_All);

The messages for pragma Pure will contain “PRAGMAS”, while those for Elaborate_
All will contain “No Elaborate”. If a disabling comment mentions pragmas, it will disable
both controls, but a disabling comment that mentions No_Elaborate will disable only the
second one.

4.2.4 Disabling controls

It is possible to disable controls on parts of the source code by placing markers in the source
code. A marker is an Ada comment, where the comment mark (--) is immediately followed
by the special tag “##” (by default).

There are two kinds of markers: block markers and line markers. Both kinds specify a list
of controls to disable/re-enable. A list of controls is a list of rule names (to disable/re-enable
all controls on the indicated rule(s)) or control labels (to disable/re-enable all controls with
that label), separated by spaces. Alternatively, the list of controls can be the word “all” to
disable/re-enable all controls.

In a “--##” line, everything appearing after another “##” tag (by default) is ignored.
This allows the insertion of a comment explaining why the control is disabled at that point.

Both tags can be changed with the “set” command. See Section 4.3.6 [Set command],
page 33.

Chapter 4: Command language reference 31

4.2.4.1 Block disabling

A control is disabled from a “rule off” marker that applies to it until a “rule on” marker
that applies to it. If there is no appropriate “rule on” marker, the control is disabled up to
the end of file.

Syntax:

--## rule off <control_list>

Ada code block

--## rule on <control_list>

Ex:

--## rule off rule1 rule2 ## Authorized by QA ref 1234

I := I + 1;

Proc (I);

--## rule on rule2

4.2.4.2 Line disabling

A control is disabled only for the line where a marker that applies to it appears.

Syntax:

Ada code line --## rule line off <rule_list>

Ex:

I := I + 1; --## rule line off rule3 rule_label_1

Conversely, it is possible to re-enable a control for just the current line in a block where
it is disabled:

Syntax:

Ada code line --## rule line on <rule_list>

Ex:

--## rule off rule1 rule2

...

I := I + 1; --## rule line on rule2

4.2.5 Limitation

Since the disabling is based on special comments, there is a conflict with the rule
“header comments” which is based on the content of comments. Line disabling is
not possible with this rule, and block disabling needs special care. See Section 5.21
[Header Comments], page 74.

4.3 Other commands

In addition to controls, AdaControl recognizes a number of commands. Although these
commands are especially useful when using the interactive mode (see Section 3.4 [Interactive
mode], page 15), they can be used in command files as well.

Chapter 4: Command language reference 32

4.3.1 Go command

This command starts processing of the controls that have been specified.

Syntax:

go;

Controls are not reset after a “go” command; for example, the following program:

search entities (pack1);

go;

search entities (pack2);

go;

will first output all usages of Pack1, then all usages of both Pack1 and Pack2. See
Section 4.3.5 [Clear command], page 33 to reset controls.

If not in interactive mode, a “go” command is automatically added at the end, therefore
it is not required in rules files.

4.3.2 Quit command

This command terminates AdaControl.

Syntax:

quit;

If given in a file, all subsequent commands will be ignored. This command is really
useful only in interactive mode. See Section 3.4 [Interactive mode], page 15.

4.3.3 Message command

This command prints a message on the output file.

Syntax:

message "<any string>" [pause];

The length of the message is limited to 250 characters. If the word “pause” (case
irrelevant) is specified after the message, AdaControl will wait for the user to press the
Return key before proceeding.

Note that the message is syntactically a string, and must therefore be quoted (double
quotes).

4.3.4 Help command

This command prints various informations about the rules and AdaControl itself.

Syntax:

Help [<help_item> {,<help_item>}]

<Help_Item> ::=<keyword> | <rule name> | variables ["<pattern>"]

<keyword> ::= all | commands | license | list | options | rules | version

Without any argument, this command prints a summary of all commands and rule
names. If given one or more keywords or rule names, it prints the corresponding help
message. See Section 3.5.1 [Getting help], page 15 for the details.

Chapter 4: Command language reference 33

4.3.5 Clear command

This command command clears (i.e. removes) controls that have been previously given.

Syntax:

Clear all | <rule name>{,<rule name>} ;

The command clears all controls given for the indicated rules, of for all rules if the all

keyword is given. Rule variables (see Section 4.3.6 [Set command], page 33) associated to
cleared rules are returned to their default values. For example, the following program:

search entities (pack1);

go;

clear all;

search entities (pack2);

go;

will first output all usages of Pack1, then all usages of Pack2. Without the “clear all”
command, the second “go” would output all usages of Pack1 together with all usages of
Pack2.

4.3.6 Set command

This command sets various parameters of AdaControl.

Syntax:

set Format Gnat|Gnat_Short|CSV|CSV_Short|Source|Source_short|None;

set Check_Key|Search_Key "<value>"

set Max_Errors [<value>];

set Max_Messages [<value>];

set Output|New_Output <output file>;

set Statistics <level>;

set Tag1|Tag2 "<value>";

set Trace <trace file>;

set Debug|Exit_On_Error|Verbose|Warning|Warning_As_Error

On|Off;

set Timing On|Off|Global

set Ignore On|Off|Inverted;

set <Rule_Name>.<Variable> <Value>

The “set format” command selects the output format for the messages, like the “-F”
option; see Section 4.2.1 [Control kinds and report messages], page 28 for details.

The “set check key” command defines a string which is used in place of “Error” in
messages issued by a “check” control. Similarly, the “set search key” command defines a
string which is used in place of “Found” in messages issued by a “search” control. This can
be useful when AdaControl is used, for example, to detect places where manual inspection
is required; having the word “Error” in the message could be misleading to the persons in
charge of the review. Note however that if you set these keys, the GPS interface will not
be able to recognize properly the messages.

The “set max errors” and “set max messages” limit the output of AdaControl, like the
“-m” and “-M” options; see Section 3.1.5 [Output limits], page 13 for details. If no <value>
is given after the command name, the corresponding limitation is removed.

Chapter 4: Command language reference 34

The “set output” and “set new output” commands redirect the output of subsequent
controls to the indicated file. If the string console (case irrelevant) is given as the <output
file>, output is redirected to the console.

The “set new output” always create a new file (or overwrites an existing file with the
same name).

The “set output” command appends if the file exists, unless the “-w” option is given,
in which case it is overwritten. However, the file is overwritten only the first time it is
mentionned in an “output” command. This means that you can switch forth and back
between two output files, all results from the same run will be kept. Note however that for
this to work, you need to specify the output file exactly the same way: if you specify it once
as “result.txt”, and then as “./result.txt”, the second one will overwrite the first one.

The “set statistics” command sets the statistics level, like the “-S” option; see
Section 4.2.1 [Control kinds and report messages], page 28 for details.

The “set Tag1|Tag2” command changes the tags used to disable (or enable) rules.
“Tag1” is the string that appears immediately after the comment indicator (--), and “tag2”
is the tag that terminates the special comment. Note that these tags must be given as
strings (in quotes) and that case is relevant. See Section 4.2.4 [Disabling controls], page 30
for details.

The “set trace” command redirects the trace messages of the “-d” option to the indicated
file. If the string console (case irrelevant) is given as the <trace file>, trace messages are
redirected to the console. As with the “-t” option, if the file exists, output is appended to
it.

The “set Debug|Exit On Error|Verbose|Warning|Warning As Error” command acti-
vates (“on”) or deactivates (“off”) options. “Debug” corresponds to the “-d” option,
“Exit On Error” to the “-x” option, “Ignore” to the “-i” option, “Timing” to the “-T” op-
tion, “Verbose” to the “-v” option, “Warning” to the “-E” option, and “Warning As Error”
to the “-e” option. See Section 3.1.8 [Verbose and debug mode], page 13, Section 3.1.10 [Exit
on error], page 14, Section 3.1.9 [Treatment of warnings], page 14, Section 3.1.4 [Output
format], page 12, and Section 3.1.7 [Local disabling control], page 13 for details.

The “set Timing” command activates (“on”) or deactivates (“off”) the printing of the
time spent in each rule after each “go” command. If set to “global” instead of “on”, the
timings are accumulated over all “go” commands, and output when the program terminates.

The “set Ignore” command governs handling of disabled messages (see Section 4.2.4
[Disabling controls], page 30). In default mode (“set Ignore Off”), disabled messages are
not printed. When set to “on” (“set Ignore On”), all messages are printed, including those
that are disabled. Setting this option can result in considerable speed-up of the printing
of messages. When set to “Inverted” (“set Ignore Inverted”), only disabled messages are
printed. This is useful to check which messages have been disabled.

Some rules may also have user-settable global variables that affect their behaviour; the
last form of the “set” command allows changing their value. The variable name is of the
form of a qualified name (i.e. “rule.var”), and the value depends on the variable. The
description of the variables (if any) and appropriate values is given for each rule.

4.3.7 Source command

This command inputs commands from another file.

Chapter 4: Command language reference 35

Syntax:

Source <input file>;

Commands are read and executed from the indicated file, then control is returned to the
place after the “source” command. There is no restriction on the content of the sourced
file; especially, it may itself include other “source” commands.

If <input file> is a relative file path, it is taken relatively to the file where the “source”
command is given. Especially, if no path is specified, the sourced file will be taken from
the same directory as the sourcing file (irrespectively of where the command is being run
from). If the file is not found there, it is searched on the path given by the environment
variable ADACTL_PATH.

The default extension is .aru, i.e. if <input file> is not found as given, AdaControl will
retry the same name with .aru appended. It is a syntax error if the file is not found either.

If the string console (case irrelevant) is given as the <input file>, commands are read
from the console until a “quit” command is given. This command is of course useful only
from files, and allows to pass temporarily control to the user in interactive mode.

4.3.8 Inhibit command

This command prevents execution of certain controls on particular units.

Syntax:

Inhibit <rule name>|all ([all] <unit> {,[all] <unit>});

Controls refering to the given rule (or all rules if “all” is specified in place of a rule name)
for the indicated unit(s) are not performed. In addition, if “all” is specified in front of the
unit name, the unit will not be accessed at all, even from rules that follow call graphs, and
could thus access this unit while analyzing other units.

There are several reasons why you might want to inhibit a control of a rule for certain
units:

• The unit is known not to obey the rule in many places, and you don’t want the output
to be cluttered with too many messages (of course, you’ll fix the unit in the near
future!);

• The unit is known to obey the rule, execution of the rule is time-consuming, and you
want to save some processing time;

• The unit is known to raise an ASIS bug, and until you upgrade to the appropriate
version of GNAT, you don’t want to be bothered by the error messages.

The “all” option for a unit is intended for the last case, to prevent ASIS bugs from
spoiling any unit that calls something from an offending unit.

4.4 Example of commands

Below is an example of a file with multiple commands:

message "Searching Unchecked_Conversion";

search entitities (ada.unchecked_conversion);

set output uc_usage.txt;

go;

clear all;

Chapter 4: Command language reference 36

message "Searching ’Address";

search entities (all ’Address);

set output address_usage.txt;

go;

This file will output all usages of Ada.Unchecked_Conversion into the file
uc_usage.txt, then output all usages of the ’Address attribute into the file
address_usage.txt. Messages are output to tell the user about what’s happenning.

Chapter 5: Rules reference 37

5 Rules reference

This chapter describes each rule currently provided by AdaControl. Note that the rules

directory of the distribution contains a file named verif.aru that contains an example of
a set of rules appropriate to check on almost any software.

A general limitation applies to all rules. AdaControl is a static checking tool, and
therefore cannot check usages that depend on run-time values. For example, it is not
possible to check rules applying to an entity when this entity is aliased and accessed through
an access value, or rules applying to subprogram calls when the call is a dispatching call.

5.1 Abnormal Function Return

This rule controls functions that may not terminate normally, i.e. where Program_Error

could be raised due to reaching the end of the function without encountering a return
statement.

5.1.1 Syntax

<control_kind> abnormal_function_return;

5.1.2 Action

The rule controls that the sequence of statements of each function body, as well as each of
its exception handlers, ends with:

• a return statement (including extended return statements)

• a raise statement (or equivalently, a call to Ada.Exceptions.Raise_Exception or
Ada.Exceptions.Reraise_Occurrence);

• a call to a procedure which is the target of a pragma No_Return;

• a block statement, whose last statement of its sequence and any exception handler is
one of these;

• an if statement that includes an else path, and where the last statement of every path
is one of these;

• a case statement where the last statement of every path is one of these.

This is a sufficient (but of course not necessary) condition to ensure that no function
raises Program_Error due to reaching the end of its statements without encountering a
return.

This rule can be specified only once.

Ex:

check abnormal_function_return;

5.1.3 Tips

This rule checks that a function always returns correctly, but does not prevent multiple
return statements in functions. If you want to ensure that there is exactly one return
statement in functions, and that this statement is always the last one, use this rule together
with the rule statements(function_return). See Section 5.53 [Statements], page 117.

Chapter 5: Rules reference 38

It is possible to exit from an extended return statement with an exit or goto statement.
If this happens, the return statement is not considered a proper return statement, and an
appropriate message is issued.

5.2 Allocators

This rule controls the use of allocators (i.e. dynamic memory allocation).

5.2.1 Syntax

<control_kind> allocators [(<target> {, <target>})];

<target> ::= [anonymous | inconsistent | not] [<category>|<entity>]

<category> ::= () | access | array | delta | digits |

mod | protected | range | record | tagged | task

5.2.2 Action

If one or several <entity> or <category> are given, only allocators whose allocated type
matches the <entity>, or whose type belongs to the indicated <category>, are controlled;
otherwise all allocators are controlled. As usual, the whole syntax for entities is allowed
for <entity>. See Appendix A [Specifying an Ada entity name], page 145. The meaning of
<category> is:

• “()”: The allocated value is of an enumerated type.

• “access”: The allocated value is of an access type.

• “array”: The allocated value is of an array type.

• “delta”: The allocated value is of a fixed point type (it is not currently possible to
distinguish ordinary fixed point types from decimal fixed point types).

• “digits”: The allocated value is of a floating point type.

• “mod”: The allocated value is of a modular type.

• “protected”: The allocated value is of a protected type.

• “range”: The allocated value is of a signed integer type.

• “record”: The allocated value is of an (untagged) record type.

• “tagged”: The allocated value is of a tagged type (including type extensions).

• “task”: The allocated value is of a task type.

This rule is especially useful for finding memory leaks, since it tells all the places where
dynamic allocation occurs.

If a parameter is preceded by the word “not”, allocators for the corresponding type or
category are not controlled (i.e. they are always allowed). If a control includes only “not”
parameters, an implicit check for all allocators is assumed.

If a parameter is preceded by the word “anonymous”, only allocators whose expected
type is an anonymous access type are controlled.

If a parameter is preceded by the word “inconsistent”, only allocators whose allocator
subtype (the name after “new”) is not the same as the designated subtype (from the access
type declaration) are controlled. However an allocator is not considered inconsistent when
the designated subtype imposes no special constraint:

Chapter 5: Rules reference 39

• when it is a class-wide type, since the allocator subtype will generally be of some
descendant specific type;

• when it is an unconstrained array type, since the allocated subtype is necessarily con-
strained;

• when it is a base type (of the form T’Base).

Note that if the access type includes a constraint like in the following example:

type Acc is access integer range 1..10;

all allocators will necessarilly be inconsistent, since there is no way to repeat the con-
straint at the place of the allocator.

“Inconsistent” can be given alone, in which case all inconsistent allocators are controlled.

Ex:

search allocators (standard.string);

check allocators (T’Class);

check allocators (array);

check allocators (Inconsistent standard.Integer);

check allocators (Inconsistent);

-- all task allocators, except when the type is called "special":

check allocators (task, not all Special);

5.2.3 Tips

The type given as an <entity> in the rule must be a first named subtype, and the rule will
also find allocators that use a subtype of this type. If the type is declared within a generic
package, the rule will control all corresponding types from instantiations.

The type mentionned in the rule is the one following the new keyword, which is not
necessarily the same as the expected type in presence of implicit conversions like this:

type T is tagged ...;

type Class_Access is access T’Class;

X : Class_Access;

begin

X := new T;

This allocator will be found for type T, not for type T’Class.

For <categories>, note that the rule “sees through” derived and private types (i.e. it will
trigger if the ultimate type belongs to the indicated category).

The reason for the “inconsistent” modifier is that inconsistent allocators may cost a
double check. Given:

type Acc is access Positive;

V : Acc;

begin
V := new Natural’(...);

The compiler will first check the constraint for Natural, then the constraint for Positive.
To avoid confusion, it is better to always use the same subtype for the allocator as used in
the access type declaration.

Chapter 5: Rules reference 40

The reason for the “anonymous” modifier is that allocators of an anonymous type (espe-

cially access parameters) create a terrible mess in accessibility rules, and are better avoided.

5.2.4 Limitations

In some (rare) cases involving anonymous access types as array or record components, ASIS
provides no way to determine the target type of the (anonymous) acccess type. Inconsistent
allocators will thus not be controlled. Such cases are detected by the rule “uncheckable”.
See Section 5.58 [Uncheckable], page 126.

5.3 Array Declarations

This rule controls properties of arrays, by enforcing a consistent value or range of values

for the lower or upper bound, or by limiting the possible size. It can also control various

aspects of the component type of the array.

5.3.1 Syntax

<control_kind> array_declarations (first, <value> | <bounds>);

<control_kind> array_declarations (last, <value> | <bounds>);

<control_kind> array_declarations (dimensions, <value> | <bounds>);

<control_kind> array_declarations (length, <bounds>);

<control_kind> array_declarations (component, <type> {,<repr_cond>});

<control_kind> array_declarations (index, <type> | <> {,<type> | <>});

<bounds> ::= min|max <value> [, min|max <value>]

<type> ::= <entity>|<category>

<category > ::= () | access | array | delta | digits | mod | private

| protected | range | record | tagged | task

<repr_cond> ::= [not] pack | size | component_size

5.3.2 Action

The first parameter is a subrule keyword:

• “First” and “Last” control the lower (respectively upper) bound of each dimension of
arrays (even unconstrained array types). If a single value is specified without the “min”
or “max” modifiers, the subrule controls the bounds that are not exactly this value;
otherwise, it controls the bounds that are smaller than the given “min” value or greater
than the given “max” value. It is possible, but not required to specify both “min” and
“max”. If this subrule is given both for “search” and for “check”, the value(s) for
“search” is interpreted as the prefered one, and the value(s) for “check” is interpreted
as an alternative acceptable one; i.e., it is a warning if the value is the one given for
“check”, and an error if it is neither. In short:

search array_declarations (first, 1);

check array_declarations (first, min -1, max 1);

will be silent if the lower bound of an array is 1, it will issue a warning if it is in the
range -1 .. 1, and an error otherwise.

• “Dimensions”controls the number of dimensions of arrays. If a single value is specified
without the “min” or “max” modifiers, the subrule controls arrays whose number of

Chapter 5: Rules reference 41

dimensions is not exactly this value; otherwise, it controls arrays whose number of
dimensions are smaller than the given “min” value or greater than the given “max”
value. It is possible, but not required to specify both “min” and “max”. If this subrule
is given both for “search” and for “check”, the value(s) for “search” is interpreted as the
prefered one, and the value(s) for “check” is interpreted as an alternative acceptable
one; i.e., it is a warning if the value is the one given for “check”, and an error if it is
neither. In short:

search array_declarations (Dimensions, 1);

check array_declarations (Dimensions, min 2, max 3);

will be silent for one-dimensional arrays, it will issue a warning for 2- and 3-dimensional
arrays, and an error otherwise.

• “Length” controls arrays that have a dimension whose number of elements is smaller
than the given “min” value or greater than the given “max” value (except for uncon-
strained array types). At least one of “min” or “max” must be specified, but it is not
required to specify both.

• “Component” controls arrays whose component type is the indicated <entity>, or whose
component type belongs to the indicated <category>. If the <entity> is a subtype, only
arrays whose components are of that subtype are controlled. If the indicated <entity> is
a type, all arrays whose components are of that type (including subtypes) are controlled.
The meaning of <category> is:

• “()”: The component is of an enumerated type.

• “access”: The component is of an access type.

• “array”: The component is of an array type.

• “delta”: The component is of a fixed point type (it is not currently possible to
distinguish ordinary fixed point types from decimal fixed point types).

• “digits”: The component is of a floating point type.

• “mod”: The component is of a modular type.

• “private”: The component is of a private type (including private extensions).

• “protected”: The component is of a protected type.

• “range”: The component is of a signed integer type.

• “record”: The component is of an (untagged) record type.

• “tagged”: The component is of a tagged type (including type extensions).

• “task”: The component is of a task type.

If <repr cond> are specified, the rule controls only arrays to which all the corresponding
representation items apply:

• “pack”: A pragma Pack applies to the array.

• “not pack”: No pragma Pack applies to the array.

• “size”: A size representation clause applies to the array.

• “not size”: No size representation clause applies to the array.

• “component size”: A component size representation clause applies to the array.

• “not component size”: No component size representation clause applies to the
array.

Chapter 5: Rules reference 42

• “index” controls arrays whose index types are the indicated <entity>, or whose index
types belong to the indicated <category>. If the <entity> is a subtype, only arrays
whose indexes are of that subtype are controlled. If the indicated <entity> is a type, all
arrays whose indexes are of that type (including subtypes) are controlled. The meaning
of <category> is the same as for “component”, but obviously only “()”, “range”, and
“mod” are allowed.

The number of <entity> given determines the dimensionality of the controlled arrays.
If a “<>” is given in place of an entity, it means that any type matches at that position.

This rule can be specified several times for the “component” and “index” subrules. For
other subrules, it can be specified at most once for each subrule and for each of “check”,
“search” and “count”. It is thus possible for each subrule to have a value considered a
warning, and a value considered an error.

Ex:

-- All arrays should start at 1:

check array_declarations (first, 1);

-- No arrray of more than 100 elements:

check array_declarations (length, max 100);

-- No empty array:

check array_declarations (length, min 1);

-- Arrays whose component type is private:

check array_declarations (component, private);

-- Packed arrays of Character

check array_declarations (component, Standard.Character, pack);

-- Packed arrays of record without size clause

check array_declarations (component, record, packed, not size);

-- One-dimensional arrays indexed by Integer

check array_declarations (index, standard.integer);

-- Three dimensional arrays whose second index is an enumeration

check array_declarations (index, <>, (), <>);

5.3.3 Tips

The subrule Max_Length ignores index constraints that are not static. Non static index con-
straints can be controlled with the rule Non_Static (Index_Constraint). See Section 5.36
[Non Static], page 95.

Requiring the same upper bound for all arrays is not very useful, but:

check array_declarations (last, min 1);

can be used to check that no array has a negative or zero upper bound.

Chapter 5: Rules reference 43

The subrule “index” controls a precise pattern of types used as indices. To control the
use of a type as an index at any position and irrespectively of the number of indices of the
array, use the rule “type usage”. See Section 5.57 [Type Usage], page 125.

5.4 Aspects

This rule controls aspect specifications (new feature in Ada 2012), either all of them or

specific ones.

5.4.1 Syntax

<control_kind> aspects [(all | <aspect mark> {, <aspect mark>})];

5.4.2 Action

Without parameters (or if “all” is given), controls all aspect specifications. Otherwise,
controls only the aspect specifications corresponding to the given aspect marks.

Ex:

search aspects;

DBC: check aspects (Pre, Post, Pre’Class, Post’Class);

5.5 Assignments

This rule controls various issues related to the assignment statement: assignments that
involve array sliding, redundant assignments to the same variable, or groups of assignments
that are replaceable by aggregate assignment.

5.5.1 Syntax

<control_kind> assignments (sliding);

<control_kind> assignments (repeated);

<control_kind> assignments (groupable, <filter> {,<filter>});

<filter> ::= given <min_val> | missing <max_val> | ratio <min_val> |

total <max_val>

5.5.2 Action

The first form (keyword “sliding”) controls array assignments where the target variable has
a different lower bound than the assigned expression; this is allowed by the language only
in so-called “sliding” contexts.

Other subrules control properties of groups of assignment statements. A group is made
of consecutive assignments, without any other intervening kind of statements (except null
statements).

The second form (keyword “repeated”) controls when a same variable (or a same subcom-
ponent of a structured variable) is assigned several times in the same group of assignments.
This form of the rule can be given only once.

The third form (keyword “groupable”) controls assignments to different subcomponents
of a same structured variable; such assignments are often replaceable by a global assignment
of an aggregate to the variable. One or several <filter> parameters indicate under which
conditions a group is reported:

Chapter 5: Rules reference 44

• “given”: <min val> (an integer value) indicates the minimum number of assigned sub-
components that will trigger the rule (i.e. the rule is triggered if the number of as-
signments to subcomponents of a same variable is greater or equal to the indicated
value).

• “missing”: <max val> (an integer value) indicates the maximum number of subcompo-
nents not assigned that will trigger the rule (i.e. the rule is triggered if the number of
subcomponents not assigned to is lesser or equal to the indicated value).

• “ratio”: <min val> (an integer value) indicates the minimum percentage of assigned
subcomponents that will trigger the rule (i.e. the rule is triggered if the percentage of
assigned subcomponents is greater or equal to the indicated value).

• “total”: <max val> (an integer value) indicates the maximum number of subcompo-
nents of the type that will trigger the rule (i.e. the rule is triggered if the number of
subcomponents of the record type is lesser or equal to the indicated value).

If several filters are given, the rule is triggered if all conditions are met (“and” logic).
Note however that this rule can be given several times, thus achieving “or” logic.

The rule is not triggered on an object if a subcomponent of that object is of a limited
type, since global assignment would not be allowed in that case.

For other structured objects, a subcomponent is counted as assigned if it has been
assigned in full, or if it should have been assigned in full (in other words: if the rule is
triggered on those subcomponents as well) - recursively, of course.

Ex:

search Assignments (sliding);

check Assignments (repeated);

-- Warn if a at least 3 fields are given and at most

-- two fields are missing, or if 80% of the fields are given:

search assignments (groupable, given 3, missing 2);

search assignments (groupable, ratio 80);

5.5.3 Tip

The “sliding” subrule is not intended to prevent all cases of slidings (the dynamic ones are
uncheckable), it is rather an indication of “obvious” cases that could be avoided.

Note that for the “groupable” subrule, it is possible to give 1 for the “given” criterion;
in this case, any assignment to parts of a structured variable will be reported, only global
assignment is allowed.

5.5.4 Limitations

As usual, AdaControl can control only static aspects of assignments. Therefore, it cannot
control assignments whose target is not statically known (like dynamic indexing of arrays).
Slices are always considered dynamic (the cases where it would be useful did not seem worth
the additional complexity).

For the “sliding” subrule, if the assigned expression is a multidimensional aggregate,
only the first dimension is checked for sliding, other dimensions are ignored. This is not
considered an important issue, since in any case the rule can detect only static cases, and

Chapter 5: Rules reference 45

the handling of sliding in multi-dimensional array aggregates is extremely touchy (see RM
4.3.3 for details).

For the “groupable” subrule, if the number of subcomponents is not statically deter-
minable (dynamic arrays, discriminated records), only the “given” criterion can be met.

5.6 Barrier Expressions

Although the language allows any expression as the barrier of a protected entry, it is gen-

erally better to use only “simple” expressions. This rule controls the kind of constructs

allowed in barrier expressions.

5.6.1 Syntax

<control_kind> Barrier_Expressions ([<allowable> {, <allowable>}]);

<allowable> ::= <entity> | <keyword>

<keyword> ::= allocation | any_component | any_variable |

arithmetic_operator | array_aggregate | comparison_operator |

conversion | dereference | indexing |

function_attribute | local_function | logical_operator |

record_aggregate | value_attribute

5.6.2 Action

Without parameters, the only elements allowed in barriers are references to boolean com-
ponents of the protected element and litterals (this corresponds to what is allowed for the
Ravenscar profile). Parameters specify other constructs that are allowed:

• Any <entity> (like a global variable, a function...) can be specified and is thus al-
lowed. As usual, the whole syntax for entities is allowed for <entity>. See Appendix A
[Specifying an Ada entity name], page 145.

• “allocation” allows use of allocators.

• “any component” allows use of protected components that are not of type
Standard.Boolean.

• “any variable” allows use of any variable (i.e. variables external to the protected ele-
ment).

• “arithmetic operator” allows use of predefined arithmetic operators ("+", "**", etc.).

• “array aggregate” allows use of array aggregates.

• “comparison operator” allows use of predefined comparison and membership operators
("=", ">", in, etc.).

• “conversion” allows use of type conversions and type qualifications.

• “dereference” allows use of dereferencing of access types (both implicit and explicit
dereferences).

• “indexing” allows use of array indexing and slices.

• “function attribute” allows use of attributes that are functions (like ’Pred, ’Image,
etc.).

• “local function” allows use of (protected) functions declared in the same protected
object.

Chapter 5: Rules reference 46

• “logical operator” allows use of predefined logical operators and short-circuit forms
(and, or else, etc.).

• “record aggregate” allows use of record aggregates and extension aggregates.

• “value attribute” allows use of attributes that are simple values (like ’First,
’Terminated, etc.).

This rule can be given only once for each of “check”, “search” and “count”.

Ex:

search barrier_expressions;

check barrier_expressions (logical_operator, comparison_operator,

any_component,

Pack.Global_State);

5.6.3 Tips

The goal of the “Simple Barrier” restriction from the Ravenscar profile is to ensure that
evaluation of barriers never raise exceptions. Even simple things like a qualified expression
can raise exceptions, but in practice more than the restriction of the Ravenscar profile can
be “reasonably” allowed.

Note that the various “operator” keywords allow only the use of predefined operators.
If a user defined operator should be allowed, provide it explicitely as an <entity>. There
is no way to allow any function call, since this would boil down to allowing pretty much
anything, but you can of course specify explicitely functions that can be called.

You can provide this rule both for “check” and “search”, but of course it makes sense
only if the set of allowed features for “search” is a superset of those allowed for “check”.
This way, the use of certain features can be interpreted only as a warning.

5.7 Case Statement

This rule controls various metrics related to the case statement. It is intended for cases

where it is desired to limit the complexity of case statements.

5.7.1 Syntax

<control_kind> Case_Statement (<subrule>, <bound> [, <bound>]);

<subrule> ::= others_span | paths | range_span | values | values_if_others

<bound> ::= min | max <value>

5.7.2 Action

The first parameter is a subrule keyword. The second (and optionnally third) parameter give
the minimum and/or maximum allowed values (i.e. the rule will control values outside the
indicated interval). If not specified, the minimum value is defaulted to 0 and the maximum
value to infinity. The parameters controlled by each subrule are:

• “others span” controls the number of values covered by when others case alternatives.

• “paths” controls the number of paths (i.e. when branches).

• “range span” controls the number of values covered by ranges used as choices.

• “values” controls the number of values covered by the subtype of the case selector.

Chapter 5: Rules reference 47

• “values if others” is like “values”, but is activated only for case statements with a when
others alternative.

This rule can be specified at most once for each subrule and for each of “check”, “search”
and “count”. It is thus possible for each subrule to have a value considered a warning, and
a value considered an error.

Ex:

check Case_Statement (others_span, min 1);

search Case_Statement (others_span, min 5);

check Case_Statement (values, max 10);

check Case_Statement (paths, min 3, max 30);

5.7.3 Tips

To control that no range is used as a choice in a case statement:

check case_statement (range_span, max 0);

To control “when others” that cover no value at all:

check case_statement (others_span, min 1);

5.7.4 Limitations

If some characteristic of the case statement depend on a generic formal type, it is not
possible to control some of the features statically. Such cases are detected by the rule
“uncheckable”. See Section 5.58 [Uncheckable], page 126.

5.8 Characters

This rule makes sure that the program text does not use “undesirable” characters.

5.8.1 Syntax

<control_kind> characters [(<subrule> {, <subrule>})];

<subrule> ::= control | not_iso_646 | trailing_space | wide

5.8.2 Action

The rule controls the occurrence in the source file of characters belonging to the classe(s)
defined by the subrules. Without parameters, all classes are controlled. The classes are
defined as follows:

• “control”: control characters that are allowed by the language (ASCII HT, ASCII VT
and ASCII FF).

• “not iso 646”: characters outside the ISO-646 set (aka ASCII).

• “trailing space”: space characters appearing at the end of the source line.

• “wide”: wide characters that are not in Standard.Character.

This rule can be given only once for each class of characters.

Ex:

check characters (control, trailing_space);

search characters (not_iso_646);

Chapter 5: Rules reference 48

5.8.3 Limitations

With the “wide” subrule, the error message may seem to not always appear at the right
place; this depends on the encoding scheme used. For example, if your source contains
(using bracket encoding):

S : Wide_String := "["1041"]["1042"]";

it will appear to AdaControl as a string containing two characters, and therefore the
error message for the second wide character will point at two characters after the opening
quote of the string.

This rule controls only the characters in the source file; other means of having characters
in the corresponding classes (like using the ’Val attribute) are not controlled.

5.9 Comments

This rule controls comments that must, or must not, appear in certain cases.

5.9.1 Syntax

<control_kind> comments (pattern, "<pattern>" {, "<pattern>"});

<control_kind> comments (position, <value> | <bounds>);

<control_kind> comments (terminating {, "<pattern>" | begin | end});

<control_kind> comments (unnamed_begin, <kind> {, <kind>});

<bounds> ::= min|max <value> [, min|max <value>]

<kind> ::= [<condition>] <unit_kind>

<condition> ::= always | declaration | program_unit

<unit_kind> ::= all | procedure | function | entry | package | task

5.9.2 Action

The first parameter is a subrule name which detemines what is being controlled.

• “pattern” controls comments that match one of the given patterns (given as strings).
Only the “useful” part of the comment is matched against the patterns, i.e. the part
after the “--” and spaces following it. Patterns are given using the full Regexp syntax.
see Appendix B [Syntax of regular expressions], page 149 for details. Pattern matching
is always case insensitive.

This subrule is especially useful to find lines with comments like “TBSL” (To Be Sup-
plied Later) or “fixme”, which are often used to mark places where something should
be done before releasing the program.

• “position” controls the starting position of comments. If a single value is specified
without the “min” or “max” modifiers, the subrule controls comments that do not
start exactly at the indicated column position; otherwise, it controls comments whose
starting column is smaller than the given “min” value or greater than the given “max”
value. It is possible, but not required to specify both “min” and “max”. If this subrule
is given both for “search” and for “check”, the value(s) for “search” is interpreted as the
prefered one, and the value(s) for “check” is interpreted as an alternative acceptable
one; i.e., it is a warning if the value is the one given for “check”, and an error if it is
neither. In short:

search comments (position, 1);

Chapter 5: Rules reference 49

check comments (first, min 1, max 6);

will be silent for comments that start in column 1, it will issue a warning for comments
that start at columns 2 to 6, and an error otherwise.

• “terminating” controls comments that are at the end of an otherwise non empty line
(i.e. that appear on the same line as a declaration or statement). If “begin” is specified,
comments appearing on a line that contains only a begin are allowed (not reported);
similarly, if “end” is specified, comments appearing on a line that contains only an
end are allowed. Otherwise, the other parameters are patterns that specify forms of
comments that are allowed. Patterns are given using the full Regexp syntax. see
Appendix B [Syntax of regular expressions], page 149 for details. Pattern matching is
always case insensitive.

• “unnamed begin” controls begin of various constructs that do not have a comment
that repeats the name of the program unit associated to the begin. Except for spaces,
the comment must not contain anything else than the unit name.

The <condition> keyword determines circumstances where the comment is required:

• ”always” (default): the comment is always required.

• “declaration”: the comment is required only if the preceding declaration part is
non-empty (not counting pragmas).

• “program unit”: the comment is required only if the preceding declaration part
contains the declarations of other program units (subprograms, packages, protected
objects, or tasks).

The <unit kind> keyword detemines the kind of program unit to which the rule applies
(“all” stands for all kinds). The subrule can be given only once of each kind of program
unit.

Ex:

check comments (pattern, "TBSL");

-- Report places where rules are disabled:

search comments (pattern, "##.* off");

-- End of line comments are not allowed, except for the

-- comment that repeats the name of a procedure on the "begin"

-- line, and special AdaControl comments

check comments (terminating, begin, "^ *##");

-- Named begin required for packages unless they have no

-- declaration, and subprograms if they have nested units

check comments (unnamed_begin, declaration package);

check comments (unnamed_begin, program_unit procedure);

check comments (unnamed_begin, program_unit function);

5.9.3 Tips

Remember that a Regexp matches if the pattern matches any part of the identifier. Use
“^” and “$” to match the beginning (resp. end) of the comment, or both.

Chapter 5: Rules reference 50

5.9.4 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

5.10 Declarations

This rule controls usage of various kinds of declarations, possibly only those occurring at

specified locations.

5.10.1 Syntax

<control_kind> declarations (<subrule> {, <subrule>});

<subrule> ::= {<location_kw>} <declaration_kw>

<location_kw> ::= all | block | library | local | nested |

own | private | public | in_generic | task_body

<declaration_kw> ::=

any_declaration | abstract_function |

abstract_operator | abstract_procedure |

abstract_type | access_all_type |

access_constant_type | access_constrained_array_type |

access_def_discriminated_type | access_formal_Type |

access_language_type | access_nondef_discriminated_type |

access_protected_type | access_subprogram_type |

access_task_type | access_unconstrained_array_type |

access_unknown_discriminated_type | access_type |

aliased_array_component | aliased_constant |

aliased_protected_component | aliased_record_component |

aliased_variable | anonymous_access_component |

anonymous_access_constant | anonymous_access_discriminant |

anonymous_access_parameter | anonymous_access_variable |

anonymous_subtype_allocator | anonymous_subtype_case |

anonymous_subtype_declaration | anonymous_subtype_for |

anonymous_subtype_indexing | array |

array_type | binary_modular_type |

box_defaulted_formal_function | box_defaulted_formal_procedure |

character_literal | child_unit |

class_wide_constant | class_wide_variable |

constant | constrained_array_constant |

constrained_array_type | constrained_array_variable |

controlled_type | decimal_fixed_type |

defaulted_discriminant | defaulted_generic_parameter |

defaulted_parameter | deferred_constant |

derived_type | discriminant |

empty_private_part | empty_visible_part |

enumeration_type | entry |

equality_operator | exception |

expression_function | extension |

fixed_type | float_type |

Chapter 5: Rules reference 51

formal_function | formal_package |

formal_procedure | formal_type |

function | function_call_renaming |

function_instantiation | generic |

generic_function | generic_package |

generic_procedure | handlers |

incomplete_type | in_out_generic_parameter |

in_out_parameter | initialized_protected_component |

initialized_record_component | initialized_variable |

instantiation | integer_type |

interface_type | library_unit_renaming |

limited_private_type | modular_type |

multiple_names | multiple_protected_entries |

name_defaulted_formal_function | name_defaulted_formal_procedure |

name_defaulted_formal_function | name_defaulted_formal_procedure |

named_number | non_binary_modular_type |

non_identical_operator_renaming | non_identical_renaming |

non_joint_ce_ne_handler | non_limited_private_type |

non_ravenscar_task | not_operator_renaming |

null_defaulted_formal_procedure | null_extension |

null_ordinary_record_type | null_procedure |

null_procedure_body | null_procedure_declaration |

null_tagged_type | operator |

operator_renaming | ordinary_fixed_type |

ordinary_fixed_type_no_small | ordinary_fixed_type_with_small |

ordinary_record_type | ordinary_record_variable |

out_parameter | package |

package_instantiation | package_statements |

predefined_operator | private_extension |

procedure | procedure_instantiation |

protected | protected_discriminant |

protected_entry | protected_type |

protected_variable | record_type |

renaming | renaming_as_body |

renaming_as_declaration | scalar_variable |

self_calling_function | self_calling_procedure |

separate | signed_type |

single_array | single_protected |

single_task | subtype |

tagged_private_type | tagged_type |

tagged_variable | task |

task_discriminant | task_entry |

task_type | task_variable |

type | unconstrained_array_constant |

unconstrained_array_type | unconstrained_array_variable |

unconstrained_subtype | uninitialized_protected_component |

uninitialized_record_component | uninitialized_variable |

Chapter 5: Rules reference 52

unknown_discriminant | variable |

variant_part

5.10.2 Action

The <location kw> restricts the places where the occurrence of the declaration is controlled.
Several <location kw> can be given, in which case the declaration is controlled at places
where all the keywords apply. If there is no <location kw>, it is assumed to be “all”.

• all: puts no special restriction to the location. This keyword can be specified for
readability purposes, and if specified must appear alone (not with other <location kw>).

• block: only declarations appearing in block statements are controlled.

• library: only library level declarations are controlled.

• local: only local declarations are controlled (i.e. only declarations appearing in
(generic) packages, possibly nested, are allowed).

• nested: only declarations nested in another declaration are controlled (i.e. only library
level declarations are allowed).

• own: only declarations that are local to a (generic) package body are controlled.

• public: only declarations appearing in the visible part of (generic) packages are con-
trolled.

• private: only declarations appearing directly in a private part are controlled.

• in_generic: only declarations appearing directly or indirectly in a generic specification
or body are controlled.

• task_body: only declarations appearing directly in a task body are controlled. Note
that it would not make sense to have a <location kw> for task specifications, since only
entries can appear there, and they cannot appear anywhere else.

The <declaration kw> specifies what kind of declaration to control:

• Declaration keywords that are Ada keywords match the corresponding Ada declara-
tions.

• any_declaration controls all declarations. This is of course not intended to forbid all
declarations in a program (!), but counting all declarations can be quite useful.

• abstract_function, abstract_operator, and abstract_procedure control the dec-
larations of abstract functions, abstract operators, and abstract procedures, respec-
tively.

• abstract_type controls the declaration of non-formal abstract types.

• access_type controls all access type declarations, while access_subprogram_type,
access_protected_type, and access_task_type control only access to procedures
or functions, access to protected types, or access to task types, respectively. Similarly,
access_constrained_array_type and access_unconstrained_array_type control
access to constrained or unconstrained array types, access_def_discriminated_type,
access_nondef_discriminated_type, and access_unknown_discriminated_type

control access to types with discriminants with default values, without default values,
and unknown discriminants, respectively. access_formal_type controls access to
(generic) formal types, access_all_type control generalized access to variables
types (aka "access all T", and access_constant_type control generalized access to

Chapter 5: Rules reference 53

constants types (aka "access constant T"). access_language_type controls access to
language defined private types.

• aliased_variable and aliased_constant control the declarations of aliased variables
or constants, respectively.

• aliased_array_component controls the declaration of arrays (array types or single
arrays) whose components are declared aliased.

• aliased_record_component and aliased_protected_component control the declara-
tions of aliased record (respectively protected) components.

• anonymous_access_component controls array and record components that are
of an anonymous access type (but not discriminants, which are controlled by
anonymous_access_discriminant). Similarly, anonymous_access_constant

and anonymous_access_variable control constants and variables that are of
an anonymous access type (including generic formal in and in out parameters,
respectively). anonymous_access_parameter controls subprogram parameters that
are of an anonymous access type, the only ones that existed in Ada 95. Note that to
avoid unnecessary messages, if a subprogram has an explicit specification, the message
for anonymous_access_parameter is given on the specification and not repeated on
the body.

• anonymous_subtype_declaration controls the declarations of anonymous subtypes
and ranges that are part of some other declaration. Similarly, anonymous_

subtype_allocator, anonymous_subtype_case, anonymous_subtype_for, and
anonymous_subtype_indexing control anonymous subtype declarations and ranges
that are part of allocators, case statements (ranges in the when path), for loop
statements, and indexing of slices or array aggregates, respectively.

• array controls all array definitions (array types and single arrays), while array_

type controls only array types and single_array controls only single arrays (ob-
jects of an anonymous array type). constrained_array_type controls only con-
strained array types, while unconstrained_array_type controls only unconstrained
array types. constrained_array_variable controls variable declarations where the
given (or anonymous) array type is constrained, while unconstrained_array variable

controls variable declarations where the given (or anonymous) array type is uncon-
strained (and the constraint is provided by the initial value). constrained_array_

constant and unconstrained_array_constant do the same with constants instead of
variables.

• character_literal controls the declaration of new character literals, i.e. character
literals defined as part of the values of an enumeration type.

• child_unit controls the declaration of all child units.

• constant controls all constants, while class_wide_constant control the declaration
of constants of a class-wide type, and deferred_constant controls the declaration of
deferred constants.

• controlled_type controls the declaration of controlled types, i.e. descendants of
Ada.Finalization.Controlled or Ada.Finalization.Limited_Controlled. Note
that this includes also private types that are not visibly controlled.

Chapter 5: Rules reference 54

• defaulted_parameter controls subprogram or entry (in) parameters that provide a
default value, while defaulted_generic_parameter controls generic formal objects
that provide a default value.

• derived_type controls regular derived types, but not type extensions (derivations of
tagged types). These are controlled by extension and private_extension.

• discriminant controls all declarations of types with discriminants, while protected_
discriminant and task_discriminant control only discriminants of protected types
and task types, respectively. defaulted_discriminants controls only discriminants
where default values are provided. unknown_discriminants controls only unknown
discriminants (AKA “(<>)” discriminants).

• empty_private_part controls package specification with an empty private part, i.e.
where the word private appears, but the private part contains no declaration (even if
it contains pragmas).

• empty_visible_part controls package specifications that contain no declaration in the
visible part (before the word private if any), even if it contains pragmas.

• enumeration_type controls the declaration of enumeration types.

• exception controls exception declarations.

• expression_function controls declaration of expression functions

• fixed_type controls all declarations of fixed point types while ordinary_fixed_type
controls only ordinary (binary) fixed point types, ordinary_fixed_type_no_small

controls ordinary fixed point type without a representation clause for ’SMALL,
ordinary_fixed_type_with_small controls ordinary fixed point type with an
explicit representation clause for ’SMALL, and decimal_fixed_type controls only
decimal fixed point types (those can never have a representation clause for ’SMALL).

• float_type controls declarations of floating point types.

• formal_function, formal_package, formal_procedure, and formal_type

control all generic formal functions, packages, procedures, and types, respec-
tively. box_defaulted_formal_function, box_defaulted_formal_procedure,
name_defaulted_formal_function, name_defaulted_formal_procedure, and
null_defaulted_formal_procedure control generic formal functions and procedures
with a box default, a name default, and a null default, respectively.

• generic_function, generic_package, generic_procedure control generic function
(respectively package, procedure) declarations.

• handlers controls the presence of exception handlers in any handled sequence of state-
ments.

• in_out_parameter and out_parameter control subprogram and entry parameters of
modes in out and out (respectively), while in_out_generic_parameter and out_

generic_parameter do the same for generic formal parameters. Note that to avoid
unnecessary messages, if a subprogram has an explicit specification, the message is
given on the specification and not repeated on the body.

• incomplete_type controls incomplete type declaration.

• initialized_variable controls variable declarations that include an initialization ex-
pression, unless they are of a class-wide type since initialization is required in that
case.

Chapter 5: Rules reference 55

• instantiation controls all instantiations, while function_instantiation, package_
instantiation, procedure_instantiation control function (respectively package,
procedure) instantiations.

• integer_type controls all declarations of integer types, while signed_type controls
only signed integer types, and modular_type controls only modular types (both kinds);
binary_modular_type controls only modular types whose modulus is a power of 2, and
non_binary_modular_type controls only modular types whose modulus is not a power
of 2.

• initialized_record_component and initialized_protected_component control
the declaration of record (respectively protected) component that include a default
initialization, while uninitialized_record_component and uninitialized_

protected_component control the declaration of record (respectively protected)
component that do not include a default initialization, unless they are of a limited
type since initialization would not be allowed in that case.

• limited_private_type controls limited private type declarations, while non_

limited_private_type controls regular (non limited) private type declarations.
tagged_private_type controls tagged private type declarations.

• multiple_names controls declarations where more than one defining identifier is given
in the same declaration.

• multiple_protected_entries controls protected definitions (from protected types or
single protected objects) that have more than one entry declaration. Note that a
protected definition with a single entry family declaration is counted as a single entry
declaration.

• named_number controls declarations of named numbers, i.e. untyped constants.

• non_joint_CE_NE_handler controls exception handlers whose choices include
Constraint_Error or Numeric_Error, but not both. This is intended for legacy
Ada 83 code that required to always handle these exceptions together; it makes little
sense for Ada95 or Ada2005 code (and to be honnest, this subrule is provided because
Gnatcheck has it).

• null_extension controls record extensions (derived tagged types) that contain no
new elements. Similarly, null_ordinary_record_type and null_tagged_type control
ordinary records and tagged types that contain no elements. Note that the record
definitions may be plain “null record” definitions, or full record definitions that contain
only null components. However, a definition is not considered null if it contains a variant
part.

• null_procedure_body controls procedure declarations whose sequence of statements
contain only null statements (or blocks without declarations and containing only null
statements). null_procedure_declaration controls Ada2005 null procedure declara-
tions (i.e., “procedure P is null;”). null_procedure controls both.

• operator controls the definition of operators (things like "+"); note that the message
is given on the specification if there is an explicit specification, on the body otherwise.
equality_operator controls only equality operators ("=" and "/=") and predefined_

operator controls only operator definitions that overload a predefined operator (like
"+" on a numeric type, for example).

Chapter 5: Rules reference 56

• package_statements controls the presence of elaboration statements in the bodies of
packages (or generic packages).

• private_extension controls private extensions, i.e. derivations from a tagged type
with a with private extension part.

• record_type controls all record type declarations (tagged or not), while ordinary_

record_type controls only non-tagged record types, and tagged_type controls only
tagged record types.

• interface_type controls interface type declarations.

• renaming controls all renaming declarations, while renaming_as_body controls only
those that are renamings as bodies of subprograms, renaming_as_declaration

controls only those that are regular renamings of subprograms (i.e. not as
bodies), operator_renaming controls only those that are renamings of an
operator, not_operator_renaming controls only those that are not renamings
of an operator, function_call_renaming controls renaming of the result of a
function call, and library_unit_renaming controls renaming of library units.
non_identical_renaming controls only renamings where the new name and the old
name are not the same, and non_identical_operator_renaming does the same, but
only for renamings of operators.

• self_calling_function controls functions whose body contains only a single (simple)
return statement, and the return expression is a (recursive) call to the same function.
Similarly, self_calling_procedure controls procedures whose body contains only a
single statement which is a (recursive) call to the same procedure. Note that this
corresponds to bodies automatically generated by gnatstub.

• subtype controls all explicit subtype declarations (i.e. not all anonymous subtypes that
appear at various places in the language), while unconstrained_subtype controls only
the subtype declarations that do not include a constraint.

• task controls task type declarations as well as single tasks declarations while single_
task and task_type control only single task declarations or task type declarations
respectively (and similarly for protected). non_ravenscar_task controls all task type
and task object declarations from a unit to which no pragma Profile (Ravenscar)

applies.

• type controls all type (but not subtype) declarations.

• variable controls all variable declarations, while uninitialized_variable controls
only variable declarations that do not include an initialization expression, unless they
are of a limited type since initialization would not be allowed in that case. scalar_

variable controls the declarations of variables of a scalar type (integer, enumeration,
float, fixed). ordinary_record_variable controls declarations of variables of an un-
tagged record type. tagged_variable controls declarations of variables of a tagged
type (including class-wide ones), while class_wide_variable controls only the dec-
larations of variables of a class-wide type. task_variable and protected_variable

control task and protected objects (respectively), whether given with a named or anony-
mous type.

• variant_part controls variant parts in record defintions.

Ex:

Chapter 5: Rules reference 57

search declarations (task, exception);

check declarations (block procedure, block function, block package);

check declarations (public task);

5.10.3 Tips

Certain keywords are not exclusive, and it may be the case that several keywords apply to
the same declaration; in this case, they are all reported. For example, if you specify:

check declarations (record_type, tagged_type);

tagged types will be reported both as “record type” and “tagged type”.

There is no subrule for checking functions whose result type is from an anonymous access
type; these are controlled by the rule return_type (anonymous_access). See Section 5.48
[Return Type], page 109.

Some of the keyword do not seem very useful; it would be strange to have a programming
rule that prevents all type declarations... But bear in mind that the <location kw> can be
used to restrict the check to certain locations; moreover, AdaControl can be used not only
for checking, but also for searching; finding all type declarations in a set of units can make
sense. As another example, “search declarations (own variable);” will find all variables
declared directly in package bodies.

Some modifiers do not make sense with certain declarations; for example, a “private
out parameter” is impossible (a parameter occurs in a subprogram declaration, not directly
in a private part). This is not a problem as far as the rule is concerned, but don’t expect
to find any...

Generally, discriminants are considered components of record types. However, discrimi-
nants of an anonymous access type (so-called access discriminants) play such a special role
in the language that they deserved their own control (anonymous_access_discriminant).

Private types are normally followed in determining the kind of access type (i.e., an
access to a private type will be controlled according to the full declaration). However,
this is not done for an access type that designates a private type defined in a language
defined unit (since the full type depends on the implementation); these are controlled as
“access language type” instead. Of course, language defined visible types are controlled
normally.

5.10.4 Limitation

In some rare cases, AdaControl may not be able to evaluate the modulus of a modular
type definition, thus preventing correct operation of “binary modular type” and
“non binary modular type” subrules. Such cases are detected by the rule “uncheckable”.
See Section 5.58 [Uncheckable], page 126.

5.11 Default Parameter

This rule checks usage (or non-usage) of defaulted parameters.

5.11.1 Syntax

<control_kind> default_parameter (<place>, <formal>, <usage>);

<place> ::= <entity> | calls | instantiations

Chapter 5: Rules reference 58

<formal> ::= <formal name> | all

<usage> ::= used | positional | not_used

5.11.2 Action

The rule controls subprogram calls or generic instantiations that use the default value for
the indicated parameter, or conversely don’t use it, either in positional notation or in any
notation. If a subprogram is called, or a generic instantiated, whose name matches <entity>,
and it has a formal whose name is <formal name>, then:

• If the string used (case irrelevant) is given as the third parameter, the rule reports
when there is no corresponding actual parameter (i.e. the default value is used for the
parameter).

• If the string positional (case irrelevant) is given as the third parameter, the rule
reports when there is an explicit corresponding actual parameter (i.e. the default is
not used for the parameter), and the actual uses positional (not named) notation.

• If the string not_used (case irrelevant) is given as the third parameter, the rule reports
when there is an explicit corresponding actual parameter (i.e. the default is not used
for the parameter), independently of whether it uses positional or named notation.

As usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Speci-
fying an Ada entity name], page 145. On the other hand, <formal> is the simple name of
the formal parameter.

Alternatively, the <entity> can be specified as calls, to control all calls or
instantiations, to control all instantiations. The <formal name> can be replaced by all,
in which case all formals are controlled.

Ex:

check default_parameter (P, X, used);

check default_parameter (P, Y, not used);

search default_parameter (calls, all, positional);

5.11.3 Tip

If the <entity> is a generic subprogram, it is also possible to give a formal parameter (a
parameter of the subprogram, not a generic parameter) as the <formal name>; in this case,
all instantiations of the indicated generic subprogram will be controlled for the use of the
indicated parameter.

5.12 Dependencies

This rule controls dependencies of units (i.e. with clauses, parents, child units...), either
according to a set of allowed/forbidden units, or by count.

5.12.1 Syntax

<control_kind> dependencies (others, <unit> {,<unit>});

<control_kind> dependencies (with, <unit> {,<unit>});

<control_kind> dependencies (public_child | private_child);

<control_kind> dependencies (<counter>, <bound> [, <bound>]);

<counter> ::= raw | direct | parent

<bound> ::= min | max <value>

Chapter 5: Rules reference 59

5.12.2 Action

The kind of action depends on the specified subrule.

The “others” subrule controls semantic dependencies to units other than those indicated.
This subrule can be specified only once, and at least one unit must be given.

The “with” subrule controls with clauses that reference the indicated units. At least one
unit must be given.

Note that for these two rules, renamings are followed: if you give the basic name of a
unit, it will be identified even if used with other names. Similarly, if you give the name of
a generic, all of its instantiations will also be controlled.

“public child” and “private child” control units that depend on their own public (re-
spectively private) child units. Since these subrules have no parameters, they can be given
only once.

Other subrules control that the number of various dependencies is whithin a specified
range. The second (and optionnally third) parameter give the minimum and/or maximum
allowed values (i.e. the rule will control values outside the indicated interval). If not
specified, the minimum value is defaulted to 0 and the maximum value to infinity.

• “raw” controls the number of units textually given in with clauses. Redundant with
clauses are counted, and a child unit counts for one.

• “direct” controls the number of different units that this unit really depends on: if a
unit is mentionned in several with clauses, it is counted only once, but if a child unit
is mentionned, all parents of this child unit are added to the count.

• “parent” counts the number of parents of the current unit. A root unit has no parent,
a child of a root unit has one parent, etc.

Ex:

check dependencies (others, Ada.Text_IO);

check dependencies (raw, max 15);

-- child units should not be nested more than 5 levels:

check dependencies (parent, max 5);

-- units that depend on nothing:

search dependencies (direct, min 1);

-- units that depend on their public children:

check dependencies (public_child);

5.12.3 Tips

If you give a name that’s already a renaming to the “others” or “with” subrules, the rule
will only apply to this name, not to what has been renamed. Therefore:

-- Allow only Ada.Text_IO:

check dependencies (others, Ada.Text_IO);

-- But not if the plain name Text_IO is used:

check dependencies (with, Text_IO);

Chapter 5: Rules reference 60

The notion of public or private for the rules “public child” or “private child” refer to
the real unit, which is not necessarily the name used in the with clause, if for example you
have a private library renaming of a public unit.

There is a slight overlap between this rule and the rule “entities’. But “entities” will find
all uses of an entity (not necessarily a compilation unit), while “dependencies” will control
occurrences only of compilation units, and only in with clauses. See Section 5.15 [Entities],
page 62.

In certain contexts, only a set of the Ada predefined units is allowed. For example, it can
be useful to forbid units defined in special needs annexes. The rules directory of Adacontrol
contains files with “Dependencies” rules that forbid the use of various predefined Ada units.
Comment out the lines for the units that you want to allow. You can then simply “source”
these files from your own rule file (or copy the content) if you want to disallow these units.
See Section 6.2 [Rules files provided with AdaControl], page 140.

5.13 Directly Accessed Globals

This rule checks that global variables in package bodies are accessed only through dedi-

cated subprograms. Especially, it can be used to prevent race conditions in multi-tasking

programs.

5.13.1 Syntax

<control_kind> directly_accessed_globals [(<kind> {,<kind>})];

<kind> ::= plain | accept | protected

5.13.2 Action

The rule controls global variables declared directly in (generic) package bodies that are
accessed outside of dedicated callable entities (i.e. procedure or function, possibly protected,
protected entries, and accept statements).

This rule can be specified only once. The parameters indicate which kinds of callable
entity are allowed: “plain” for non-protected subprograms, “protected” for protected sub-
programs, and “accept” for accept statements). Without parameters, all forms are allowed.

More precisely, the rule ensures that the global variables are read from a single callable
entity, and written by a single callable entity. Note that the same callable entity can read
and write a variable, but in this case no other callable entity is allowed to read or write the
variable.

• Subprograms used to read/write the variables must be declared at the same level as
the variable itself (i.e. not nested), and must not be generic.

• Protected subprograms used to read/write the variables must both be part of the same
single protected object, which must be declared at the same level as the variable itself
(i.e. not nested); they are not allowed to be declared in a protected type, since if there
are several protected objects of the same type, mutual exclusion would not be enforced.

• accept statements used to read/write the variables must both be part of the same single
task object, which must be declared at the same level as the variable itself (i.e. not
nested); they are not allowed to be declared in a task type, since if there are several
task objects of the same type, mutual exclusion would not be enforced.

Chapter 5: Rules reference 61

In short, this rule enforces that all global variables are accessed by dedicated access
subprograms, and that only those subprograms access the variables directly. If given with
the keyword “protected” and/or “accept”, it enforces that global variables are accessed only
by dedicated protected subprograms or tasks, ensuring that no race condition is possible.

Ex:

check directly_accessed_globals

5.13.3 Tips

Note that this rule controls global variables from package bodies, not those from the speci-
fication. This is intended, since it makes little sense to declare a variable in a specification,
and then require it not to be accessed directly, but through provided subprograms. Obvi-
ously, in this case the variable should be moved to the body.

Note that AdaControl can check that no variable is declared in a package specification
with the following rule:

check usage (variable, from_spec);

see Section 5.65 [Usage], page 135 for details.

5.13.4 Limitations

AdaControl cannot check entities accessed through dynamic names (dynamic renaming,
access on aliased variables). Use of such constructs is detected by the rule “uncheckable”.
See Section 5.58 [Uncheckable], page 126.

Due to a weakness in the ASIS standard, it is not possible to know the mode (in, out)
of variables used as parameters of dispatching calls. Such variables are considered to be
read and written at the point of the call, therefore possibly creating false positives (which
is safer than false negatives). Use of such constructs is detected by the rule “uncheckable”.
See Section 5.58 [Uncheckable], page 126.

5.14 Duplicate Initialization Calls

This rule checks that some procedures (notably initialization procedures) are not called

several times in identical conditions.

5.14.1 Syntax

<control_kind> duplicate_initialization_calls (<entity> {, <entity>});

5.14.2 Action

This rule controls calls to initialization procedures that are duplicated. The <entity> pa-
rameters are the initialization procedures to be controlled. As usual, the whole syntax for
entities is allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 145.

More precisely, the initialization procedures must follow one of these patterns:

• The procedure only has in parameters. All actual parameters used in calls are static,
and not two calls have the same values for all parameters.

• The procedure has exactly one out parameter (and no in out parameter). Not two calls
refer the same actual variable for the out parameter.

Chapter 5: Rules reference 62

The rule controls any violation of these patterns. If a procedure passed as parameter
does not have a profile that corresponds to one of the above patterns, it is an error.

Ex:

check duplicate_initialization_calls (pack.init_proc);

5.14.3 Limitation

If a variable passed as an out parameter is not statically determinable, it is not controlled by
the rule. Such a case is detected by the rule “uncheckable”. See Section 5.58 [Uncheckable],
page 126.

5.15 Entities

This rule is used to control usage of Ada entities, i.e. any declared element (type, variables,

packages, etc).

5.15.1 Syntax

<control_kind> entities ({<location>} <entity> {, {<location>} <entity>});

<location> ::= block | library | local | nested | own |

private | public | in_generic | task_body

5.15.2 Action

This rule controls all uses of the indicated entities,or only those that appear within the
specified locations. As usual, the whole syntax for entities is allowed for <entity>. See
Appendix A [Specifying an Ada entity name], page 145.

When present, the <location kw> restricts the places where the entity is controlled.
Several <location kw> can be given, in which case the entity is controlled at places where
all the keywords apply.

• block: the entity appears in a block statement.

• library: the entity appears at library level.

• local: the entity appears in a local scope (i.e. not in (generic) packages, possibly
nested)

• nested: the entity appears in a nested context (i.e. not at library level).

• own: the entity appers in a (generic) package body.

• public: the entity appears in the visible part of a (generic) package.

• private: the entity appears directly in a private part.

• in_generic: the entity appears directly or indirectly in a generic specification or body.

• task_body: the entity appears directly in a task body.

Note that this rules reports on the use of the entity, not the name: if an entity has been
renamed, it will be found under its various names. Similarly, if the given entity is a generic
unit or an entity declared inside a generic unit, all corresponding uses in all instances will
be reported.

Ex:

Chapter 5: Rules reference 63

search entities (Debug.Trace);

check entities (Ada.Text_IO.Float_IO.Put);

The second line will report on any use of a Put from any instantiation of Float_IO.

5.15.3 Tips

This rule is not intended to replace cross-references, but can be quite handy to check, for
example, that a program does not contain any more calls to debugging procedures before
fielding it.

This rule can also be used to check for all occurrences of certain attributes with the “all
<Attribute>” syntax. For example, the following will report on any usage of ’Unchecked_
Access:

check entities (all ’Unchecked_Access);

If you want to make sure that certain compilation units are not used, it is preferable to
use the rule “Depencies (with,...)” rather than “Entities”, because “Entities” will control
all uses of the unit, while “Dependencies” will control only those in with clauses (which is
of course sufficient).

In certain contexts, it can be useful to forbid certain entities, like those from Standard,
System, or entities defined in special needs annexes packages. The rules directory of
Adacontrol contains files with “Dependencies” and “Entities” rules that forbid the use of
various predefined Ada elements. Comment out the lines for the elements that you want
to allow. You can then simply “source” these files from your own rule file (or copy the
content) if you want to disallow these elements. See Section 6.2 [Rules files provided with
AdaControl], page 140.

5.15.4 Limitation

GNAT defines Unchecked_Conversion and Unchecked_Deallocation as separate entities,
rather than renamings of Ada.Unchecked_Conversion and Ada.Unchecked_Deallocation.
As a consequence, it is necessary to specify explicitely both forms if you want to make sure
that the corresponding generics are not used.

5.16 Entity Inside Exception

This rule controls entities that appear within exception handlers.

5.16.1 Syntax

<control_kind> entity_inside_exception (<spec> {, <spec>});

<spec> ::= [not] <entity> | calls | entry_calls

5.16.2 Action

This rule controls exception handlers that contain references to one or several Ada entities
specified as parameters. If the keyword “calls” is given, it stands for all subprogram and
entry calls. If the keyword “entry calls” is given, it stands for all entry calls (task or
protected). If an <entity> (or “calls” or “entry calls”) is preceded by the keyword “not”, it
is not included in the list of controlled entities (i.e. the entity is allowed in the exception
hhandler). This allows to make exceptions to a more general specification of an entity, or
to allow calls to well-defined procedures if the keyword “calls” is given.

Chapter 5: Rules reference 64

Ex:

-- No Put_Line in exception handlers:

check entity_inside_exception (ada.text_io.put_line);

-- No entry calls in exception handlers:

check entity_inside_exception (entry_calls);

-- No calls allowed, except to the Report_Exception procedure:

check entity_inside_exception (calls, not Reports.Report_Exception);

-- No Put allowed, except the one on Strings:

check entity_inside_exception (all Put,

not Ada.Text_IO.Put{Standard.String});

5.17 Exception Propagation

This rule controls that certain program units are guaranteed to never propagate exceptions,

or that local exceptions cannot propagate out of their scope.

5.17.1 Syntax

<control_kind> exception_propagation

(local_exception);

<control_kind> exception_propagation

([<level>,] interface, <convention> {, <convention> });

<control_kind> exception_propagation

([<level>,] parameter, <entity> {, <entity>});

<control_kind> exception_propagation

([<level>,] task);

<control_kind> exception_propagation

(<level>, declaration);

5.17.2 Action

The “local exception” subrule controls a design pattern that ensures that a local exception
cannot propagate outside the scope where it is declared. If an exception is declared within
a block, a subprogram body, an entry body, or a task body, then this body must have either
a handler for this exception or for others; this handler must not reraise the exception; and
no handler is allowed to raise explicitely the exception. The subrule controls explicit raise
statements and calls to Raise_Exception and Reraise_Occurrence, but it does not control
exceptions raised as a consequence of calling other subprograms.

The other subrules control subprograms, tasks, or all declarations that can propagate
exceptions, while being used in contexts where it is desirable to ensure that no exception
can be propagated.

A subprogram or task is considered as not propagating if:

1. it has an exception handler with a “when others” choice

2. no exception handler contains a raise statement, nor any call to Ada.Exception.Raise_
Exception or Ada.Exception.Reraise_Occurrence.

Chapter 5: Rules reference 65

3. no declaration from its own declarative part propagates exceptions.

A declaration is considered propagating if it includes elements that could propagate
exceptions. This is impossible to assess fully using only static analysis, therefore the <level>
parameter determines how pessimistic (or optimistic) AdaControl is in determining the
possibility of exceptions. Possible values of the <level> parameter, and their effect, are:

• 0: expressions in declarative parts are not considered as propagating (anything allowed,
this is the default value for “interface”, “parameter” and “task”. Not allowed for
“declaration”).

• 1: all function calls (including operators) in declarations are considered as potentially
propagating exceptions, except those appearing in named number declarations or scalar
types declarations, since those are required by the language to be static.

• 2: same as 1, plus every use of variables in expressions is considered as potentially
propagating.

• 3: same as 2, plus any declaration of objects (constants or variables) is considered
potentially propagating (not very useful for “declaration”).

These subrules serve several purposes:

• The “interface” subrule analyzes all subprograms to which an Interface or Export

pragma applies (with the given convention(s)), and reports on those that can propagate
exceptions.

Since it is dangerous to call an Ada subprogram that can propagate exceptions from a
language that has no exception (and especially C), any such subprogram should have
a “catch-all” exception handler.

• The “parameter” subrule accepts one or more fully qualified formal parameter names
(i.e. in the form of the parameter name prefixed by the full name of its subprogram,
see Appendix A [Specifying an Ada entity name], page 145). The subrule reports any
subprogram that can propagate exceptions and is used as the prefix of a ’Access or
’Address attribute that appears as part of an actual value for the indicated formal.
Similarly, the indicated formal can also be the name of a formal procedure or function
of a generic. In this case, the rule will report on any subprogram that can propagate
exceptions and is used as an actual in an instantiation for the given formal.

Many systems (typically windowing systems) use call-back subprograms. Although the
native interface is generally hidden behind an Ada binding, the call-back subprograms
will eventually be called from another language, and like for the “interface” subrule,
any such subprogram should have a “catch-all” exception handler.

• The “task” subrule reports any task that can propagate exceptions.

Since tasks die silently if an exception is propagated out of their body, it is generally
desirable to ensure that every task has an exception handler that (at least) reports that
the task is being completed due to an exception.

• The “declaration” subrule reports any declaration that can propagate exceptions, irre-
spectively of where it appears. In this case, the specification of <level> is required and
cannot be 0.

It is sometimes desirable to make sure that no declaration raises an exception, ever.

Ex:

Chapter 5: Rules reference 66

-- Make sure that C-compatible subprograms don’t propagate exceptions:

check exception_propagation (interface, C);

-- Parameter CB of of procedure Pack.Register is used as a call-back

-- Make sure that not procedure passed to it can propagate exceptions.

check exception_propagation (parameter, Pack.Register.CB);

-- Make sure that tasks do not die silently due to unhandled exception:

check exception_propagation (task);

-- Make sure that no exception is raised by elaboration of declarations:

check exception_propagation (2, declaration);

The first example will report on any subprogram to which a pragma Interface (C,...)

applies that can propagate exceptions.

If Proc is a procedure that can propagate exceptions, the second example will report on
every call like:

Pack.Register (CB => Proc’Access);

The third example will report on any task that can terminate silently due to an unhandled
exception.

The fourth example will report on any declaration that makes use of function calls or
variables.

5.17.3 Tips

Note that the registration procedure for a call-back can be designated by an access type,
but in this case, use the name of the formal for the access type. For example, given:

package Pack is
type Acc_Proc is access procedure;
type Acc_Reg is access procedure (CB : Acc_Proc);

...

Ptr : Acc_Reg := ...;

You can give a rule such as:

check exception_propagation (parameter, Pack.Acc_Reg.CB);

All procedures registered by a call to Pack.Ptr.all will be considered.

The declaration of a for loop parameter is not checked by this rule. In other words, the
rule “check exception propagation (2, declaration)” will not issue a message for:

for I in Positive range 1 .. X loop ...

although formally the declaration of I could raise Constraint Error if X is negative. We
consider that for the casual user, Constraint Error appears to be raised by the for loop
statement.

5.17.4 Limitations

An exception may be raised in a subprogram considered as not propagating by this rule, if
an exception handler calls a subprogram that propagates an exception.

Chapter 5: Rules reference 67

The rule will not consider subprograms whose body is missing, or that are not statically
known (i.e. if a subprogram is registered through a dereference of a pointer to subprogram),
like in the following example:

Pack.Register (CB => Pointer.all’Access);

Due to a weakness of the ASIS standard, references to subprograms that appear in
dispatching calls are not considered. This limitation will be removed as soon as we find a
way to work around this problem, but the issue is quite difficult!

These last two cases are detected by the rule “uncheckable”. See Section 5.58 [Uncheck-
able], page 126.

5.18 Expressions

This rule controls usage of various kinds of expressions.

5.18.1 Syntax

<control_kind> expressions (<subrule> {, <subrule>});

<subrule> ::= {<category>} <expression_kw>

<expression_kw> ::=

and | and_array |

and_binary | and_boolean |

and_then | array_aggregate |

array_named_others | array_non_static_range |

array_others | array_partial_others |

array_positional_others | array_range |

case | complex_parameter |

downward_conversion | extendable_aggregate |

extension_aggregate | explicit_dereference |

fixed_multiplying_op | for_all |

for_some | if |

if_elsif | if_no_else |

implicit_dereference | in |

inconsistent_attribute_dimension | inherited_function_call |

mixed_operators | not_in |

or | or_array |

or_binary | or_boolean |

or_else | parameter_view_conversion |

prefixed_operator | real_equality |

record_partial_others | record_aggregate |

record_others | slice |

static_membership | type_conversion |

upward_conversion | unconverted_multiplying_op |

underived_conversion | universal_range |

unqualified_aggregate | xor |

xor_array | xor_binary |

xor_boolean

<category> ::=

Chapter 5: Rules reference 68

<> | () | range | mod | delta | digits | array |

record | tagged | access | new | private | task | protected

5.18.2 Action

This rule controls usage of certain forms of expressions. The rule can be specified at most
once for each subrule (i.e. subrules that accept categories can be specified once for each
combination of categories and expression keyword).

Categories are used by certain subrules to further refine the control. They define cate-
gories of types to which they apply:

• “<>”: Any type

• “()”: Enumerated types

• “range”: Signed integer types

• “mod”: Modular types

• “delta”: Fixed point types (no possibility to differentiate ordinary and decimal fixed
point types yet).

• “digits”: Floating point types

• “array”: Array types

• “record”: (untagged) record types

• “tagged”: Tagged types (including type extensions)

• “access”: Access types

• “new”: Derived types

• “private”: Private types

• “task”: Task types

• “protected”: Protected types

The subrule define the kind of expression being controlled:

• and, or, xor, and_then, or_else, in, and not_in control usage of the corresponding
logical operator (or short circuit form, or membership test).

• and_array, or_array, and xor_array do the same, but only for operators whose result
type is an array type.

• and_binary, or_binary, and xor_binary do the same, but only for operators whose
result type is a modular type.

• and_boolean, or_boolean, and xor_boolean do the same, but only for operators
whose result type is Standard.Boolean.

• array_aggregate and record_aggregate control array and record aggregates, respec-
tively, while unqualified_aggregate controls aggregates (both arrays and records)
that do not appear directly within a qualified expression. extension_aggregate con-
trols extension aggregates, while extendable_aggregate controls aggregates that are
not extension aggregates, but whose type is a non-root tagged type, or are extension
aggregates whose ancestor part is not their immediate parent (such aggregates could
be written as extension aggregates).

• array_others and record_others control the occurrence of a others => association
in array and record aggregates, respectively.

Chapter 5: Rules reference 69

• array_partial_others and record_partial_others do the same, but only if there
are other associations in addition to the others => in the aggregate. array_named_

others and array_positional_others do the same, but only for named (respectively
positional) array aggregates.

• array_range controls array aggregates that include a range (i.e. an association like A

.. B =>). array_non_static_range does the same, but only if (at least) one of the
bounds is not static.

• case controls case expressions (introduced in Ada 2012).

• complex_parameter controls complex expressions used as actual parameters in subpro-
gram (or entry) calls. A complex expression is any expression that includes a function
call (including operators). This rule is not applied to the parameters of operators, since
otherwise it would forbid any expression with more than a single operator.

• explicit_dereference controls explicit dereferences of access values (i.e. with an
explicit .all).

• fixed_multiplying_op controls calls to predefined fixed-point multiplication and divi-
sion (regular fixed-point or decimal-fixed point). unconverted_fixed_multiplying_

op does the same, but only when both operands are objects (not literals) of a fixed point
type (not Integer); this is when type conversion is required by Ada 83.

• for_all and for_some control the two forms of quantifiers introduced by Ada 2012.

• if controls all if expressions (introduced in Ada 2012), while if_elsif only controls
those that have an elsif part, and if_no_else only controls those that have no else
part.

• implicit_dereference controls implicit dereferences of access values (i.e. when the
.all is omitted).

• inconsistent_attribute_dimension controls when no dimension is explicitely given
for a ’First, ’Last, ’Range or ’Length attribute and the attribute applies to a multi-
dimensional array, or conversely, when an explicit dimension is given, but the attribute
applies to a one-dimensional array.

• inherited_function_call controls calls to functions that have been inherited by a
derived type and not redefined. If a category is specified, only calls whose result type
belongs to the category are controlled.

Derived types are followed, i.e. the “real” category from the original type is used for the
matching; as a consequence, the “new” category cannot be specified for this subrule.

• mixed_operators controls expressions that involve several different operators, without
parentheses. In a sense, it extends the language rule that forbids mixing and and or
in logical expressions to all other operators. Note that for the purpose of this subrule,
membership tests (in, not in) and short circuit forms (and then, or else) are considered
operators.

• prefixed_operator controls calls to operators that use prefixed notation (i.e. "+"(A,
B)). If a category is specified, only calls whose result type belongs to the category are
controlled.

Derived types are followed, i.e. the “real” category from the original type is used for the
matching; as a consequence, the “new” category cannot be specified for this subrule.

Chapter 5: Rules reference 70

• real_equality controls usage of predefined exact equality or inequality (“=” or “/=”)
between real (floating point or fixed point) values.

• slice controls usage of array slices.

• static_membership controls membership tests (in and not in) where the expression
on the left is statically known to belong to the range (or subtype) on the right, and is
therefore always True (or false for not in).

• type_conversion controls all (sub)type conversions, while underived_conversion

controls conversions between types that do not belong to the same derivation fam-
ily. downward_conversion and upward_conversion control conversions between types
that belong to the same family, converting away from the root or toward the root, re-
spectively. parameter_view_conversion controls conversions that appear as out or in
out actual parameters.

One or two categories can be specified; if only one category is specified, only conversions
whose result type belong to that category are controlled. If two categories are specified,
only conversions whose souce type belongs to the first category and whose target type
belong to the second category are controlled.

Derived types are followed, i.e. the “real” category from the original type is used for the
matching; as a consequence, the “new” category cannot be specified for this subrule.

• universal_range controls discrete ranges that are a part of an index constraint, con-
strained array definition, or for-loop parameter specification (but not type or subtype
defintions), and whose bounds are both of type universal integer.

Ex:

search expressions (real_equality, slice);

check expressions (mixed_operators);

-- Find logical operators that could be replaced by short-circuits forms:

check expressions (and_boolean, or_boolean);

-- Find all conversions between integer and floating point types

search expression (range digits type_conversion);

-- Find all conversions from a fixed point type:

search expressions (delta <> type_conversion);

-- Find all view conversions between array types:

search expressions (array parameter_view_conversions);

-- Find all "structural" conversions between arrays

search expressions (array underived_conversion);

-- Some think that downward conversions of tagged types are evil:

check expressions (tagged downward_conversion);

Chapter 5: Rules reference 71

5.18.3 Tips

The real_equality subrule does not control calls to an equality operator that has been
defined by the user; actually, it would make little sense to write a function and then forbid
its use! However, if control of calls to such a function is desired, it can be easily accomplished
by using the entities rule. See Section 5.15 [Entities], page 62.

This rule does not check the use of allocators (new), use the rule Allocators instead.
See Section 5.2 [Allocators], page 38.

“inherited function call” controls only function calls. For procedure calls, see rule
Section 5.53 [Statements], page 117.

Specifying array_partial_others is the same as specifying both array_named_others

and array_positional_others. It is retained for compatibility, and also for symetry with
record_partial_others.

Per language rules, underived conversions are allowed only between numeric types, and
between structurally equivalent array types.

“static membership” is handy for finding a common misuse of membership tests, where
the user assigns an external value (obtained with Unchecked Conversion for example) to
a variable, then checks that the variable belongs to its subtype to make sure the value is
valid. Such a check can be optimized away by the compiler; the ’Valid attribute should be
used instead.

5.18.4 Limitations

“static membership” does not control the complex membership tests with several choices
that are possible with Ada 2012.

5.19 Generic Aliasing

This rule controls instantiations where the same actual is given to more than one formal.

5.19.1 Syntax

<control_kind> generic_aliasing [(<subrule> {, <subrule>})];

<subrule> ::= [<condition>] <entity>

<condition> ::= unlikely | possible | certain

<entity> ::= all | variable | type | subprogram | package

5.19.2 Action

This rule identifies instantiations where the same variable, type, subprogram, or package
is given several times (to different formal parameters). Such aliasing of variables is dan-
gerous, since it can induce subtile bugs. Other elements are less dangerous, although often
questionable (depending on the generic).

The <entity> parameter indicates for which elements aliasing is controlled; “all” stands
for all kinds of elements.

There are many cases where aliasing cannot be determined statically. The optional pa-
rameter specifies how aggressively the rule will check for possible aliasings (see Section 5.40
[Parameter Aliasing], page 98 for a more detailed description of these modifiers). Possible
values are (case irrelevant):

Chapter 5: Rules reference 72

• Certain (default): Only cases where aliasing is statically certain are output.

• Possible: In addition, cases where aliasing may occur depending on the value of an
indexed component are output. This can be specified only for variables.

• Unlikely: In addition, cases where aliasing may occur due to access variables designating
the same element are output. This can be specified only for variables and subprograms.

Without any parameter, the rule is the same as “certain all”. The rule can be specified
only once for each combination of <condition> and <entity>.

Ex:

check generic_aliasing (certain variable);

search generic_aliasing (possible variable, type, subprogram, package);

5.19.3 Limitations

Due to a limitation of ASIS for Gnat, AdaControl might not be able to differentiate prede-
fined operators of different types, and may thus give false positives if a generic is instantiated
with, for example, two different functions that are actually "+" on Integer and "+" on Float.
This possibility of false positives is detected by the rule “uncheckable”. See Section 5.58
[Uncheckable], page 126.

5.20 Global References

This rule controls accesses to global elements that may be subject to race conditions, or
otherwise shared.

5.20.1 Syntax

<control_kind> global_references (<subrule> {, <root>});

<subrule> ::= all | read | written | multiple | multiple_non_atomic

<root> ::= <entity> | function | procedure | task | protected

5.20.2 Action

This rule controls access to global variables from several entities (the roots). The <entity>
must be subprograms, task types, single task objects, protected types, or single protected
objects. As usual, the whole syntax for entities is allowed for <entity>. See Appendix A
[Specifying an Ada entity name], page 145. The special keywords function, procedure,
task, and protected are used to refer to all functions, procedures, tasks, and protected
entities, respectively.

The <subrule> determines the kind of references that are controlled. If it is all, all
references to global elements from the indicated entities are reported. If <subrule> is read
or written, only read (respectively write) accesses are reported. If <subrule> is multiple,
only global elements that are accessed by more than one of the indicated entities (i.e.
shared elements) are reported. Note however that if a reference is found from a task type
or protected type, it is always reported, since there are potentially several objects of the
same type. If <subrule> is multiple_non_atomic, references reported are the same as with
multiple, except that global variables that are atomic or atomic_components and written
from at most one of the indicated entities are not reported. Note that this latter case
corresponds to a safe reader/writer use of atomic variables.

Chapter 5: Rules reference 73

This rule follows the call graph, and therefore finds references from subprogram and
protected calls made (directly or indirectly) from the indicated entities. However, calls to
subprograms from the Ada standard library are not followed.

Ex:

-- Find global variables used by P1 or P2:

search global_references (all, P1, P2);

-- Find global variables modified by functions:

check global_references (written, function);

-- Find possible race conditions:

check global_references (multiple, task, protected);

This rule can be given several times, and conflicts (with multiple) are reported on a
per-rule basis, i.e. given:

check global_references (multiple, P1, P2);

check global_references (multiple, P1, P3);

the first rule will report on global variables shared between P1 and P2, and the second
rule will report on global variables shared between P1 and P3.

5.20.3 Tips

The notion of “global” is relative, i.e. it designates every variable whose scope encloses
(strictly) the indicated entities. This means that a same reference may or may not be
global, depending on the indicated entity. Consider:

procedure Outer is
Inner_V : Integer;

procedure Inner_P is
begin

Inner_V := 1;

end Inner_P;

begin
Inner_P;

end Outer;

The rule

check global_references (all, outer);

will not report any global reference, while the rule

check global_references (all, outer.inner_p);

will report a reference to Inner_V. This is as it should be, since there is no race condition
if several tasks call Outer, while there is a risk if several tasks (declared inside Outer) call
Inner_P.

Specifying:

check global_references (all, function);

Chapter 5: Rules reference 74

will report on any function that access variables outside of their scope, i.e. all functions
that have potential side effects. On the other hand, this check must follow the whole call
graph for any function encountered, and can therefore be quite costly in execution time.

5.20.4 Limitations

Calls through pointers to subprograms and dispatching calls are unknown statically; they
are assumed to not access any global. Such calls are detected by the rule “uncheckable”.
See Section 5.58 [Uncheckable], page 126.

5.21 Header Comments

This rule controls that every compilation unit starts with a standardized comment.

5.21.1 Syntax

<control_kind> header_comments (minimum, <comment lines>);

<control_kind> header_comments (model, "<file name>");

5.21.2 Action

If the keyword “minimum” is given as first parameter, this rule controls that every com-
pilation unit starts with at least the number of comment lines indicated by the second
parameter. If several forms of headers are possible, checking that the headers follow the
project’s standard requires manual inspection, but this rule is useful to control that unit
headers have not been inadvertantly forgotten.

If the keyword “model” is given as first parameter, the second parameter is a string,
interpreted as a file name. If the file name is not an absolute path, it is interpreted as
relative to the directory of the file that contains the rule, or to the current directory if the
rule is given on the command line. Each line of the indicated file is a regular expression,
and the rule controls that the corresponding line of the source file matches the expression.
See Appendix B [Syntax of regular expressions], page 149. In addition, it is possible to
specify a repetition for a line. If the first character of a line is a ’{’, the line must have the
following syntax:

{<min>,[<max>]}

where <min> and <max> specify the minimum and maximum number of occurrences of
the pattern in the line that follows this one. <min> must be at least 0, and <max> must be
at least 1, and be equal or greater than <min>. If <max> is omitted, it means that the line
may occur any number of times.

As a convenience, if the first character of a line is a ’*’ it means that the next line is a
pattern that can occur any number of times (same as {0,}). If the first character is a ’+’,
it means that the next line is a pattern that must occur at least once (same as {1,}). If the
first character is a ’?’, it means that the next line is an optional pattern (same as {0,1}).

Note that the repetition lines all start with a special character which is not allowed
at the start of a regular expression; there is therefore no ambiguity. Everything after the
special character (or the closing ’}’) is ignored, and can be used to provide comments.

This rule can be given at most once with “minimum” for each of “check”, “search”, and
“count”. The rule can be given only once with “model” (but it can be given together with
one or more “minimum” rules).

Chapter 5: Rules reference 75

Ex:

check header_comments (minimum, 10);

search header_comments (model, "header.pat");

count header_comments (minimum, 20);

This makes an error for every unit that starts with less than 10 comment lines, and a
warning for units that do not follow the pattern contained in the file header.pat. A count
of units that start with less than 20 comment lines is reported.

Example of a pattern file:

{1,3} 1 to 3 occurrences of next line

^--$

^-- Author: .+$

^-- Date: \d{2}/\d{2}/\\d{4}$

5.21.3 Tips

Remember that the lines of the file are regular expressions; every character that is specially
interpreted (like “+”, “*”, etc.) must be quoted with “\” if it must appear textually. To
ease the process of generating the model file, the directory source contains a script file for
sed named makepat.sed; if you run this script on a file that contains a standard header, it
will produce a pattern file where each line starts with “^”, ends with “$”, and every special
character is quoted with “\”.

When the model contains an indication of repeated lines (“*”), the repetition is not
“greedy”, i.e. matching will stop as soon as what follows the repetition matches. This
is very useful to check header comments that have sections, but where you don’t want to
impose a precise content to each section. Imagine for example that the structure is:

• A comment with “HISTORY”

• Any number of comment lines

• A comment with “AUTHORS”

• Any number of comment lines

the following pattern will work as expected:

^-- HISTORY$

*

^--

^-- AUTHORS

*

^--

5.21.4 Limitation

Since the “model” subrule analyzes the content of comments, there is a conflict with the
disabling mechanism of AdaControl that uses special comments. See Section 4.2.4 [Disabling
controls], page 30.

Specifically, line disabling is not possible at all. Block disabling is possible, provided the
disabling line is allowed by the pattern. In short, if you want to be able to disable this rule,
the first lines of the model file should be:

Chapter 5: Rules reference 76

?

--##

i.e. allow an optional block disabling comment as the first line of the file. Note that
there is no need to re-enable this rule, since it is checked only at the start of a compilation
unit.

5.22 Improper Initialization

This rule enforces a coding pattern that ensures that variables and out parameters are

properly initialized befor use.

5.22.1 Syntax

<control_kind> improper_initialization [(<subrule> {,<subrule>})]

<subrule> ::= {<extra>} <target>

<extra> ::= access | limited | package | return

<target> ::= out_parameter | variable | initialized_variable

5.22.2 Action

This rule controls variables and/or out parameters that are not “properly” initialized, i.e.
those that are not “safely” initialized, those that have a useless initialization in their dec-
laration, and those where the value is known to be used before having been assigned. The
notion of variable includes the return object of an extended return statement (Ada 2005+).

A variable (or out parameter) is considered safely initialized if there is an initialization
expression in its declaration, or if it is given a value in the first statements of the corre-
sponding body, before any “non-trivial” statement. The goal is not to perform a complete
data-flow analysis, but rather to follow a design pattern where all variables are initialized
before entering the “active” part of the algorithm. This makes it easier to ensure that
variables are properly initialized.

“Trivial” statements are:

• null statements;

• assignment statements;

• procedure calls;

• return statements;

• extended return statements, unless they contain a nested non-trivial statement.

• if and case statements, unless they contain a nested non-trivial statement.

The <target> parameters determines what is to be checked:

• out_parameter controls that out parameters are safely initialized before the first non-
trivial statement, and before every (trivial) return statement.

• variable controls that local variables are safely initialized before the first non-trivial
statement. If the <extra> modifier return is specified, only return objects of extended
return statements are controlled.

• initialized_variable controls variables that are safely initialized before the first non-
trivial statement, but also have an explicit (and therefore useless) explicit initialization

Chapter 5: Rules reference 77

in their declaration. If the modifier return is specified, only return objects of extended
return statements are controlled.

In all cases, variables used in trivial statements before being initialized are reported.

A variable is considered initialized if it is the target of an assignment statement, or if it
is used as an actual for an out (but not in out) parameter of a procedure call. Variables
assigned in if or case statements must receive a value in all paths to be considered initialized
after the statement. Note that the variable must be assigned to globally, i.e. assigning to
some elements of an array, or some fields of a record, does not count as an initialization of
the variable.

Some variables are not controlled, unless the corresponding <extra> modifier is given:

• Variables declared immediately within a (generic) package specification or body, since
in general, package state variables are initialized through calls to dedicated procedures.
Use the “package” modifier to control also package variables.

• Variables of an access types, or arrays whose components are of an access type, since
these are always initialized by the compiler. Use the “access” modifier to control also
variables of an access type.

• Variables of a limited type, since global assignment is not available for them. Use the
“limited” modifier to control also variables of a limited type.

This rule can be given only once for each value of <target>. Without parameters, it is
equivalent to giving all, without any <extra>.

Ex:

check improper_initialization (out_parameter);

check improper_initialization (access limited variable);

search improper_initialization (initialized_variable);

5.22.3 Tips

variable and initialized_variable control also return objects from extended return
statements, since it would be strange to guarantee safe initialization of local variables and
not return objects. On the other hand, the design pattern enforced by this rule may seem
to limitative for regular variables, but it might be desirable to enforce it for return objects;
hence the possibility to limit the rule to return objects by specifying the return modifier.

5.22.4 Limitations

Due to a weakness of the ASIS standard, dispatching calls and calls to procedures that are
attributes are not considered for the initialization of variables. Note that for attributes,
only ’Read and ’Input have an out parameter.

In the rare case where a variable is initialized by a dispatching call or an attribute
call, this limitation will result in a false positive. Such a case is detected by the rule
“uncheckable”. See Section 5.58 [Uncheckable], page 126. It is then easy to disable the rule
for this variable. See Section 4.2.4 [Disabling controls], page 30.

The rule analyzes only initializations and uses that are directly in the unit, not those
from nested units, since these are in the general case not statically checkable.

Chapter 5: Rules reference 78

There are other cases where an object is automatically initialized by the declaration, like
controlled types that have redefined the Initialize procedure, records where all compo-
nents have a default initialization, etc. The rule does not consider these as automatically
initialized, as it does for access types. Maybe later...

5.23 Instantiations

This rule controls all instantiations of a generic, or only instantiations that are made with
specific values of the parameters. Control can be restricted to instantiations in specified
places.

5.23.1 Syntax

<control_kind> instantiations (<generic_spec>);

<generic_spec> ::= {<location_kw>} <entity> {, <formal_spec>}

<formal_spec> ::= <entity> | <category> | <> | =

<location_kw> ::= all | block | library | local | nested |

own | private | public | in_generic | task_body

<category> ::= () | access | array | delta | digits | mod |

private | protected | range | record | tagged | task

5.23.2 Action

The rule controls instantiations of the specified <entity>. As usual, the whole syntax for
entities is allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 145.

The <location kw> restricts the places where the occurrence of the instantiation is con-
trolled. Several <location kw> can be given, in which case the instantiation is controlled at
places where all the keywords apply. If there is no <location kw>, it is assumed to be “all”.

• all: puts no special restriction to the location. This keyword can be specified for
readability purposes, and if specified must appear alone (not with other <location kw>).

• block: only instantiations appearing in block statements are controlled.

• library: only library level instantiations are controlled.

• local: only local instantiations are controlled (i.e. only instantiations appearing in
(generic) packages, possibly nested, are allowed).

• nested: only instantiations nested in another declaration are controlled (i.e. only
library level instantiations are allowed).

• own: only instantiations that are local to a (generic) package body are controlled.

• public: only declarations appearing in the visible part of (generic) packages are con-
trolled.

• private: only instantiations appearing directly in a private part are controlled.

• in_generic: only instantiations appearing directly or indirectly in a generic specifica-
tion or body are controlled.

• task_body: only instantiations appearing directly in a task body are controlled. Note
that it would not make sense to have a <location kw> for task specifications, since
instantiations are not allowed there.

An instantiation matches if it appears at a specified location (if any) and either:

Chapter 5: Rules reference 79

1. No <formal spec> is given in the rule

2. The actual parameters of the instantiation match the corresponding <formal spec>, in
order (there can be more actual parameters in the instantiation than specified in the
rule). An actual parameter matches an <entity> at a given place if it is the same entity,
or if the <entity> designates a (sub)type and the actual is a subtype of this type. As
usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying
an Ada entity name], page 145. In addition, it matches if the actual is a type name
that belongs to the indicated category:

• “()”: The parameter is of an enumerated type.

• “access”: The parameter is of an access type.

• “array”: The parameter is of an array type.

• “delta”: The parameter is of a fixed point type (it is not currently possible to
distinguish ordinary fixed point types from decimal fixed point types).

• “digits”: The parameter is of a floating point type.

• “mod”: The parameter is of a modular type.

• “private”: The parameter is of a private type (including private extensions).

• “protected”: The parameter is of a protected type.

• “range”: The parameter is of a signed integer type.

• “record”: The parameter is of an (untagged) record type.

• “tagged”: The parameter is of a tagged type (including type extensions).

• “task”: The parameter is of a task type.

In addition, two special signs can be given instead of an <entity> (or <category>): a
box (<>) matches any actual parameter (i.e. it stands for any value), and an equal
sign (=) matches if there has been already an instantiation with the same value for this
parameter (i.e. it matches the second time it is encountered).

If an actual is an expression (which is possible only for a formal in object), it cannot be
matched.

Ex:

-- Check all instantiations of Unchecked_Deallocation:

search instantiations (ada.unchecked_deallocation);

-- Check all instantiations of Unchecked_Conversion from or to String:

check instantiations (ada.unchecked_conversion, standard.string);

check instantiations (ada.unchecked_conversion, <>, standard.string);

-- Check all instantiations of Unchecked_Conversion from address

-- to an integer type:

check instantiations (ada.unchecked_conversion, system.address, range);

-- Check that Unchecked_Conversion is instantiated only once

-- for any pair of arguments:

check instantiations (ada.unchecked_conversion, =, =);

Chapter 5: Rules reference 80

5.23.3 Tips

The various forms of <formal spec> make the rule quite powerful. For example:

-- Not two instantiations of Gen with the same first parameter:

check instantations (Gen, =);

-- Not two instantiations of Gen with the same first and third parameter:

check instantiations (Gen, =, <>, =);

-- Not two instantiations of Gen with the same first parameter if the

-- second parameter is Pack.Proc:

check instantiations (Gen, =, Pack.Proc);

-- Not two instantiations of Gen with the same first parameter if the

-- second parameter is any procedure named Proc:

check instantiations (Gen, =, all Proc);

Note that a generic actual wich is a subtype matches all types (and subtypes) above it.
Therefore,

check instantiations (ada.unchecked_deallocation (standard.natural));

will find only instantiations that use Natural, while:

check instantiations (ada.unchecked_deallocation (standard.integer));

will find instantiations that use either Integer, Positive, or Natural.

5.23.4 Limitation

GNAT defines Unchecked_Conversion and Unchecked_Deallocation as separate entities,
rather than renamings of Ada.Unchecked_Conversion and Ada.Unchecked_Deallocation.
As a consequence, it is necessary to specify explicitely both forms if you want to make sure
that the corresponding generics are not instantiated.

5.24 Insufficient Parameters

This rule controls calls to subprograms and entries where the values of parameters does not
provide sufficient information to the reader to correctly identify the parameter’s purpose.

5.24.1 Syntax

<control_kind> insufficient_parameters (<max_allowed> {, <entity>});

5.24.2 Action

<max allowed> is the maximum number of allowed “insufficient” parameters (can be 0).
The <entity> parameters designate enumeration types whose values should be included in
the check. As usual, the whole syntax for entities is allowed for <entity>. See Appendix A
[Specifying an Ada entity name], page 145.

An actual parameter is deemed "insufficient" if it is given in positional (as opposed to
named) notation, it is an expression whose primaries are all numeric literals, or enumeration
literals belonging to one of the types passed as parameters to the rule (Standard.Boolean
for example).

Chapter 5: Rules reference 81

This rule can be given once for each of check, search, and count. This way, it is possible
to have a level considered a warning (search), and one considered an error (check).

Ex:

search Insufficient_Parameters (1, Standard.Boolean);

check Insufficient_Parameters (2, Standard.Boolean);

5.24.3 Tips

This rule does not apply to operators that use infix notation, nor to calls to subprograms
that are attributes, since named notation is not allowed for these.

This rule controls the use of positional parameters according to their values; it is also
possible to control the use of positional parameters according to the number of parame-
ters with the rule positional_associations. See Section 5.42 [Positional Associations],
page 101.

Note also that this rules applies only to calls, while positional_associations applies
to all forms of associations.

5.25 Local Access

This rule controls the taking of access values (through the ’Access, ’Unchecked_Access,
or the GNAT specific ’Unrestricted_Access attributes) of local (i.e. non global) entities.

5.25.1 Syntax

<control_kind> local_access [(<subrule> {,<subrule>})];

<subrule> ::= constant | variable | procedure | function |

protected_procedure | protected_function

5.25.2 Action

Without parameters, the rule controls all entities given as prefixes of ’Access, ’Unchecked_
Access, or ’Unrestricted_Access attributes and reports on those that are not global, i.e.
not defined in (possibly nested) library packages.

If parameters are specified, only entities belonging to the corresponding categories are
controlled.

Ex:

Dangerous_Objects: check local_access (Constant, Variable);

5.25.3 Tips

In Ada 95, accessibility rules make sure that taking the ’Access of an entity cannot cre-
ate dangling pointers, but this check can be circumvented by using ’Unchecked_Access

(but not on subprograms), or in GNAT, by using ’Unrestricted_Access. Moreover, Ada
2005 generalized anonymous access types create more cases where accessibility levels are
dynamically checked.

Taking an access value on a global entity is never a risk, but every use of access values
designating local entities has a potential of a failing dynamic accessibility check or even of
a dangling pointer. This rule is helpful in finding the places that need careful inspection -
of for disallowing taking accesses on anything but global entities.

Chapter 5: Rules reference 82

5.26 Local Hiding

This rule controls declarations that hide an outer declaration with the same name.

5.26.1 Syntax

<control_kind> local_hiding [(<subrule> {,"<allowed pattern>"})];

<subrule> ::= {<exception>} strict | overloading

<exception> ::= not_operator | not_enumeration |

not_identical_renaming | not_different_families

5.26.2 Action

If “strict” is given (or if there is no subrule), the rule controls strict hiding (an inner
subprogram that overloads an outer one is not considered hiding). If “overloading” is given,
only subprograms that overload another subprogram in the same scope or in an outer scope
are controlled. Note that following the normal Ada model, the declarations of enumeration
literals are considered functions (and thus controlled).

Modifiers are used to exclude some controls (i.e. to allow the corresponding hiding):

• “not operator”: the subrule does not apply to the declarations of operators (i.e. things
like “"+"”).

• “not enumeration”: the subrule does not apply to the hiding/overloading of enumera-
tion literals by other enumeration literals (the rule still applies to the hiding/overloading
of functions by enumeration litterals, for example).

• “not identical renaming” (only allowed with “strict”): the subrule does not apply to
renamings where the renaming name is the same as the name of the renamed entity.
Such renamings are commonly used to provide visibility of identifiers in a controlled
way.

• “not different families” (only allowed with “strict”): the subrule does not apply if the
hiding identifier and the hidden one do not belong to the same “family”. Families are
either data (constant, variables, numbers, etc.), types, subprograms (including entries),
packages, generics, exceptions, and labels (including block and loop names).

If one or more <allowed pattern> are given, hiding (or overloading) of identifiers that
match one of the patterns are not reported. The whole syntax for regular expressions is
allowed for the pattern, but the matching is always case insensitive. See Appendix B [Syntax
of regular expressions], page 149.

This rule can be given only once for “strict” and once for “overloading”.

Ex:

Hiding: check local_hiding (strict);

Overloading: search local_hiding (not_operator overloading);

5.26.3 Variables

The rule provides a variable that allows to adjust the verbosity of messages for the subrule
“overloading”.

Chapter 5: Rules reference 83

Variable Values Default Effect
Overloading Report compact/detailed detailed if “detailed”, when a construct that over-

loads several other constructs is encoun-
tered, “overloading” will issue a message for
each overloaded construct; if “compact”,
it will issue a single message mentionning
how many constructs are overloaded, and a
pointer to the last one.

5.26.4 Tips

If you have a naming convention like having all tagged types named “instance” (with a
meaningful name for the enclosing package), and if in addition your package structure
follows the inheritance hierarchy (i.e. a descendent class is in a child package), then all
“instance” will hide each other - but this is of course intended. Specifying “^instance$”
as an allowed pattern will prevent error messages for these declarations.

Note that the name is given between “^” and “$”. Otherwise, following normal regexp
syntax, any identifier containing “instance” would be allowed.

A confusion between names belonging to different “families” (as defined here) always
leads to a compilation error; it may be acceptable to allow local hiding of names belonging
to different families, since there is no risk involved.

5.27 Max Blank Lines

This rule controls excessive spacing in the program text.

5.27.1 Syntax

<control_kind> max_blank_lines (<max allowed blank lines>);

5.27.2 Action

This rule controls the occurrence of more than the indicated number of consecutive blank
lines (empty lines, or lines that contain only spaces). This rule can be given once for each of
check, search, and count. This way, it is possible to have a number of blank lines considered
a warning (search), and one considered an error (check). Of course, this makes sense only
if the number for search is less than the one for check.

Ex:

search max_blank_lines (2);

check max_blank_lines (5);

5.28 Max Call Depth

This rule controls the maximum depth of subprograms (or entry) calls.

5.28.1 Syntax

<control_kind> max_call_depth (<allowed depth> | finite);

Chapter 5: Rules reference 84

5.28.2 Action

Roughly, the call depth is the number of frames that are stacked by a call: if you call a
subprogram that calls another subprogram that calls nothing, then the call depth is 2. Note
that a call to a task (not protected) entry has always a depth of 1, since the accept body
that corresponds to the entry is executed on a different stack.

The value of the parameter is the maximum allowed depth, i.e. the rule will trigger if
the call depth is strictly greater than the indicated value. A call to a (directly or indirectly)
recursive procedure is considered of infinite depth, and will be therefore signaled (with an
appropriate message) for any value of <allowed depth>. Alternatively, the keyword “finite”
can be given in place of the <allowed depth>: in this case, only calls to recursive subprograms
will be signalled.

This rule can be given once for each of check, search, and count. This way, it is possible
to have a call depth considered a warning (search), and one considered an error (check). Of
course, this makes sense only if the number for search is less than the one for check.

Ex:

search max_call_depth (9);

check max_call_depth (finite);

5.28.3 Tip

It is possible to give the value 0 for <allowed depth>. Of course, it would not make sense
to forbid all subprogram calls in an Ada program, but this can be useful for inspection
purposes, since every call will be reported, and the message indicates the depth of the call.

If the message says that the call depth “is N”, it is exactly N. If the message says that
the call depth is “at least N”, it means that the call chain includes a call to a subprogram
whose depth is unknown (see “Limitations” below); “N” is the call depth if this subprogram
does not call anything else. Of course, the rule issues a message if this minimal value is
greater than the maximum allowed value.

5.28.4 Limitations

Calls to subprograms that are attributes are assumed to have a depth of 1. Calls to prede-
fined operators are assumed to be in-lined (i.e. a depth of 0).

Calls through pointers to subprograms and dispatching calls are unknown statically;
in addition, some subprograms may not have a body available for analysis, like imported
subprograms, or possibly subprograms from the standard library; they are all assumed to
have a depth of 1. Such calls are detected by the rule “uncheckable”. See Section 5.58
[Uncheckable], page 126.

5.29 Max Line Length

This rule controls that no line exceeds a given length.

5.29.1 Syntax

<control_kind> max_line_length (<max allowed length>);

Chapter 5: Rules reference 85

5.29.2 Action

This rule controls the maximum length of source lines. This rule can be given once for each
of check, search, and count. This way, it is possible to have a length considered a warning
(search), and one considered an error (check). Of course, this makes sense only if the length
for search is less than the one for check.

Ex:

search max_line_length (80);

check max_line_length (120);

5.30 Max Nesting

This rule controls excessive nesting of declarations.

5.30.1 Syntax

<control_kind> max_nesting ([<subrule>,] <max allowed depth>);

<subrule> ::= all | generic | separate | task

5.30.2 Action

If “all” (or no subrule) is given as the first parameter, this rule controls the nesting of declar-
ative constructs (like subprograms, packages, generics, block statements. . .) that exceed a
given depth. Nesting of statements (loop, case) is not considered.

If “generic” is given as the first parameter, this rule controls the nesting of generics,
ignoring all non-generic units.

If “separate” is given as the first parameter, this rule controls the nesting of separate
bodies.

If “task” is given as the first parameter, this rule controls the nesting of tasks (task types
and single task objects), ignoring all non-task units.

This rule can be given once for each subrule and each of check, search, and count. This
way, it is possible to have a level considered a warning (search), and one considered an error
(check). Of course, this makes sense only if the level for search is less than the one for check.

Note that the value given is the maximum allowed nesting; f.e. if the value given for
“generic” is 1, it means that a generic inside a generic is allowed, but not more.

Ex:

search max_nesting (5);

check max_nesting (all, 7);

check max_nesting (generic, 1);

check max_nesting (separate, 0); -- Do not allow separate in separate

check max_nesting (task, 0); -- Do not allow a task in another task

5.31 Max Size

This rule controls the maximum size, in source lines of code, of various statements and
declarations.

Chapter 5: Rules reference 86

5.31.1 Syntax

<control_kind> max_size (<subrule>, <max allowed lines>);

<subrule> ::= accept | block | case | case_branch |

if | if_branch | loop | simple_block |

unnamed_block | unnamed_loop |

package_spec | package_body | procedure_body |

function_body | protected_spec | protected_body |

entry_body | task_spec | task_body |

unit

5.31.2 Action

The first parameter is a subrule keyword that determines which elements are controlled:

• “accept” controls accept statements.

• “block” controls all block statements, while “simple block” controls only blocks without
a declare part, and “unnamed block” controls only blocks without a name.

• “loop” controls all loop statement, while “unnamed loop” controls only loops without
a name.

• “if branch” and “case branch” control the length of each alternative of an if (respec-
tively case) statement.

• “package spec”, “package body”, “procedure body”, “function body”, “pro-
tected spec”, “protected body”, “entry body”, “task spec”, and “task body” control
the length of the declaration of the corresponding element.

• “unit” controls the whole length of compilation units.

For each kind of element, the indicated value is the maximum allowed size of the full
element; however, for branches (“if branch” and “case branch”) it is the maximum size of
the sequence of statements in the branch (i.e., the line that contains the elsif is not counted
as part of an “if branch”).

This rule can be given once for each of check, search, and count for each kind of element.
This way, it is possible to have a level considered a warning (search), and one considered
an error (check). Of course, this makes sense only if the number of lines for search is less
than the one for check.

Ex:

check Max_Size (if_branch, 30);

search Max_Size (if_branch, 50);

check Max_Size (unnamed_loop, 20);

5.31.3 Tip

Note that “procedure body” and “function body” apply to protected subprograms as well
as regular ones, and that there is no subrule for the length of the declaration of subprograms.
Such fine specifications didn’t seem useful, but could be added if someone expresses a need
for it.

5.32 Max Statement Nesting

This rule controls the nesting of compound statements.

Chapter 5: Rules reference 87

5.32.1 Syntax

<control_kind> max_statement_nesting (<subrule>, <max allowed depth>);

<subrule> ::= block | case | if | loop | all

5.32.2 Action

If one of “block”, “case”, “if”, or “loop” is specified, it controls the nesting of statements
of the same kind, i.e. an if within a loop within an if counts only 2 for the “if” keyword. If
“all” is specified, all kinds of compound statements are counted together, i.e. an if within
a loop within an if counts for 3. This rule can be given once for each of check, search, and
count, and for each of the subrules. This way, it is possible to have a level considered a
warning (search), and one considered an error(check). Of course, this makes sense only if
the level for search is less than the one for check.

Ex:

check max_statement_nesting (loop, 3);

search max_statement_nesting (all, 5);

5.33 Movable Accept Statements

This rule controls statements that are inside accept statements and could safely be moved
outside.

5.33.1 Syntax

<control_kind> movable_accept_statements (certain|possible {, <entity>})

5.33.2 Action

Since it is good practice to block a client for the shortest time possible, any action that
does not depend on the accept parameters should not be part of an accept statement.

Statements that involve synchronisation (delay statements, accept or entry calls...) are
not movable. Statements (including compound statements) that reference the parameters
of the enclosing accept are not movable. In addition, statements that use one of the <entity>
given as parameters are never considered movable. As usual, the whole syntax for entities
is allowed for <entity>. See Appendix A [Specifying an Ada entity name], page 145. Note
that if a generic entity, or an entity declared in a generic package, is given, all statements
that use the corresponding instantiated entity are considered not movable.

If the first parameter of the rule is certain, only statements after the last non-movable
statement are reported. If the first parameter is possible, a simple data flow analysis is
performed, and every statement that does not reference a variable that appears to depend
(directly or indirectly) on a parameter is also reported.

Ex:

check movable_accept_statements (possible, Log.Report_Rendezvous);

5.33.3 Tips

The list of <entity> given to the rule can be, for example, procedures whose execution must
be part of the accept statement for logical reasons. They can also be global variables, when
the rendezvous is intended to prevent concurrent access to these variables.

Chapter 5: Rules reference 88

5.34 Naming Convention

This rule controls the form of identifiers to make sure that they follow the project’s naming
conventions. Different naming conventions can be specified, depending on the kind of Ada
entity that the name is refering to.

5.34.1 Syntax

<control_kind> naming_convention

([root] [others] {<location>} [<type_spec>] <filter_kind>,

[case_sensitive|case_insensitive] [not] "<pattern>"

{, ...});

<location> ::= global | local | unit

<type_spec> ::= <entity> | {<category>}

<category> ::= () | access | array | delta | digits | mod |

private | protected | range | record | tagged | task

<filter_kind> ::= All |

Type |

Discrete_Type |

Enumeration_Type |

Integer_Type |

Signed_Integer_Type |

Modular_Integer_Type |

Floating_Point_Type |

Fixed_Point_Type |

Binary_Fixed_Point_Type |

Decimal_Fixed_Point_Type |

Array_Type |

Record_Type |

Regular_Record_Type |

Tagged_Type |

Interface_Type |

Class_Type |

Access_Type |

Access_To_Regular_Type |

Access_To_Tagged_Type |

Access_To_Class_Type |

Access_To_SP_Type |

Access_To_Task_Type |

Access_To_Protected_Type |

Private_Type |

Private_Extension |

Generic_Formal_Type |

Variable |

Regular_Variable |

Field |

Discriminant |

Record_Field |

Chapter 5: Rules reference 89

Protected_Field |

Procedure_Formal_Out |

Procedure_Formal_In_Out |

Generic_Formal_In_Out |

Constant |

Regular_Constant |

Regular_Static_Constant |

Regular_Nonstatic_Constant |

Named_Number |

Integer_Number |

Real_Number |

Enumeration |

Sp_Formal_In |

Generic_Formal_In |

Loop_Control |

Occurrence_Name |

Entry_Index |

Label |

Stmt_Name |

Loop_Name |

Block_Name |

Subprogram |

Procedure |

Regular_Procedure |

Protected_Procedure |

Generic_Formal_Procedure |

Function |

Regular_Function |

Protected_Function |

Generic_Formal_Function |

Entry |

Task_Entry |

Protected_Entry |

Package |

Regular_Package |

Generic_Formal_Package |

Task |

Task_Type |

Task_Object |

Protected |

Protected_Type |

Protected_Object |

Exception |

Generic |

Generic_Package |

Generic_Sp |

Generic_Procedure |

Chapter 5: Rules reference 90

Generic_Function |

Renaming |

Object_Renaming |

Exception_Renaming |

Package_Renaming |

Subprogram_Renaming |

Procedure_Renaming |

Function_Renaming |

Generic_Renaming |

Generic_Package_Renaming |

Generic_Sp_Renaming |

Generic_Procedure_Renaming |

Generic_Function_Renaming

5.34.2 Action

The first parameter defines the kind of declaration to which the rule is applicable, and other
parameters are strings, interpreted as regular expressions that define the patterns that must
be matched (or not). See Appendix B [Syntax of regular expressions], page 149.

If one or more <location> keyword is specified, the pattern applies only to identifiers
declared at the corresponding place. Otherwise, the pattern applies to all identifiers, irre-
spectively of where they are declared. The definition of locations is as follows:

• “unit”: The identifier is the defining name of a compilation unit.

• “global”: The identifier is declared in a package or a generic package, possibly nested
in other packages or generic packages.

• “local”: All other cases.

In the case of objects (corresponding to filters in the “variable” and “constant” families)
and functions (in the “function” family), it is possible to be more specific, depending on
the type of the object (or the return type of the function), as specified by the <type spec>
modifier. The <type spec> modifier is either a single <entity> giving the type of the object
or one or more <category> keywords. As usual, the whole syntax for entities is allowed
for <entity>. See Appendix A [Specifying an Ada entity name], page 145. The meaning of
<category> is:

• “()”: The object is of an enumerated type.

• “access”: The object is of an access type.

• “array”: The object is of an array type.

• “delta”: The object is of a fixed point type (it is not currently possible to distinguish
ordinary fixed point types from decimal fixed point types).

• “digits”: The object is of a floating point type.

• “mod”: The object is of a modular type.

• “private”: The object is of a private type (including private extensions).

• “protected”: The object is of a protected type.

• “range”: The object is of a signed integer type.

• “record”: The object is of an (untagged) record type.

Chapter 5: Rules reference 91

• “tagged”: The object is of a tagged type (including type extensions).

• “task”: The object is of a task type.

For a given layer of the hierarchy (i.e. “variable”, “regular variable”), only the most spe-
cific filter is applicable, i.e. “standard.boolean variable” will apply to all boolean variables,
while plain “variable” will apply to other variables. See examples below.

If “case sensitive” is specified, pattern matching considers casing. Otherwise
(“case insensitive”), casing is irrelevant. The default is “case insensitive”, and can be
changed by setting the variable “Default Case Sensitivity”, see below. Note that the rule
checks the name only at the place where it is declared; casing might be different when the
name is used later.

If a pattern is preceded by “not”, then the pattern must not be matched (i.e. the rule
reports when there is a match).

The rule will be activated if an identifier is declared that does not match any of the
“positive” patterns (the ones without “not”), or if it matches any of the ”negative” patterns
(the ones with a “not”). If only negative patterns are given, it is implicitely assumed that
all other identifiers are OK. In other words, accepted identifiers must have the form of (at
least) one of the “positive” patterns (if any), but not the form of one of the “negative”
patterns.

The filter kinds are organized hierarchically, as reflected in the syntax above. To be valid,
the name must match the patterns specified for its own filter, and for all filters above it in
the hierarchy. For example, a modular type declaration must follow the rules (if specified)
for “all”, “type”,”discrete type”, “integer type” and “modular integer type”. However, if a
filter kind is preceded by “others”, the rule will apply only if there is no applicable positive
pattern deeper in the hierarchy; similarly, if a filter kind is preceded by “root”, no rule
above it in the hierarchy is considered (neither for itself nor its children). This is useful to
make exceptions to a more general rule. For example:

-- All identifiers must have at least 3 characters:

check naming_convention (all, "...");

-- And start with an upper-case letter

-- (will not apply to types and access types, because of "others" and

-- other rules given below)

check naming_convention (others all, case_sensitive "^[A-Z]");

-- Exception to the rule for "all":

-- No minimum length for "for loop" identifiers, but must be

-- all uppercase

check naming_convention (root loop_control, case_sensitive "^[A-Z]+$");

-- Types must start with "t", then an upper-case letter:

-- (will not apply to access types, because of "others" and

-- other rule given below)

check naming_convention (others type, case_sensitive "^t[A-Z]");

-- Access types must start with "ta", then an upper-case letter:

check naming_convention (access_type, case_sensitive "^ta[A-Z]");

Chapter 5: Rules reference 92

-- Boolean variables, and only these, must start with "Is_" or

-- "Has_":

check naming_convention (variable, not "^Is_", not "^Has_");

check naming_convention (standard.boolean variable, "^Is_", "^Has_");

-- Functions returning Wide_String must start with "Wide_", and

-- similarly for Wide_Wide_String, and no other:

check naming_convention (standard.wide_string function,

"^Wide_",

not "^Wide_Wide_");

check naming_convention (standard.wide_wide_string function,

"^Wide_Wide_");

check naming_convention (function, not "^Wide_");

It is of course not necessary to specify all the filter kinds, nor to specify filters down to
the deepest level; if you specify a rule for “type”, it will be applied to all type declarations,
whether there is a more specific rule or not.

Subtypes and derived types must follow the rule for their respective original (full) type.
Incomplete type declarations are not checked, since their corresponding full declaration is
(normally) checked. Private types (including of course the full declaration of a private type)
follow the rule for private types, not the rules for their full type view (otherwise it would
be privacy breaking).

Renamings are treated specially: if there is no explicit rule for a given renaming, the
applicable rule is the one for the renamed entity.

Ex:

-- Predefined name is forbidden:

check naming_convention (all, not "Integer");

-- Types must either start or end with T

check naming_convention (type, case_sensitive "^T_",

case_sensitive "_T$");

-- "Upper_Initials" naming convention:

check naming_convention

(all, case_sensitive "^[A-Z][a-z0-9]*(_[A-Z0-9][a-z0-9]*)*$");

-- All global variables must start with "G_"

check naming_convention (global variable, "G_");

5.34.3 Variables

The rule provides a variable that allows to specify the default casing.

Variable Values Default Effect
Default Case Sensitivity on/off off if “on”, controls that do not explicitely

specify case sensitivity are case sensitive.

Chapter 5: Rules reference 93

5.34.4 Tips

The rule only checks the casing of identifiers at the place where they are declared. A useful
companion rule is “style (casing identifier, original)”, which ensures that every use of the
identifier will use the same casing as in the declaration. See Section 5.54 [Style], page 120.
Similarly, in the case of a subprogram and its parameters, the check is not done on the body
if there is an explicit specification (since specification and body have to match anyway).

The rule does not check the names of operators, since it would make little sense to
have naming conventions for things whose name is imposed. If you want to prevent the
definition of operators, refer to the rule “declarations” and its subrules “operator”, “equal-
ity operator”, and“predefined operator”. See Section 5.10 [Declarations], page 50.

Remember that a Regexp matches if the pattern matches any part of the identifier. Use
“^” and “$” to match the beginning (resp. end) of the name, or both.

A constant is considered static for the purpose of “Regular Static Constant” and “Reg-
ular Nonstatic Constant” if it is of a discrete type initialized by a static expression, or if it
is an aggregate whose components all have static values. This is different from the official
definition of “static” in the language, but corresponds to what most users would expect.

“class type” is applicable to subtypes that designate a class-wide type. Similarly, “ac-
cess to class type” is applicable to access types whose designated type is class-wide.

If you don’t want any special rule for renamings (not even the one that applies to the
renamed entity), specify:

check naming_convention (renaming, "");

This imposes no constraint on renamings, but since it is specified explicitely, the implicit
rule for the renamed entity won’t apply.

The rules directory of Adacontrol contains two files named no_standard_entity.aru

and no_system_entity.aru. These are files that contain a naming convention rule that
forbids the declaration of names declared in packages Standard and System, respectively.
You can simply “source” these files from your own rule file (or copy the content) if you want
to disallow these identifiers.

Like usual, naming convention rule can be given multiple times, and can be disabled.
However, consider the following:

Rule1 : check naming_convention (constant, "^c_");

Rule2 : check naming_convention (constant, "^const_");

The rule will trigger if a constant is declared that does not start with either “c ” or
“const ”. But here, we have two different rule labels. The message will refer to the first
label encountered in the rule file; this is the label that must be mentionned in a disabling
comment, unless you simply disable “naming convention”.

5.34.5 Limitations

This rule does not support wide characters outside the basic Latin-1 set.

5.35 No Operator Usage

This rule controls integer types that do not use any arithmetic operators, which indicates

that they might be replaceable with other kinds of types.

Chapter 5: Rules reference 94

5.35.1 Syntax

<control_kind> no_operator_usage [(<parameter> [,<parameter>])];

<parameter> ::= [<filter>] <observed>

<filter> ::= not | ignore | report

<observed> ::= relational | logical | indexing

5.35.2 Action

This rule controls integer types (both signed and modular) where no arithmetic operator of
the type is used in the program.

When such a type is found, it migh be interesting to find out other usages to determine
a possible better kind of type. “relational” means that relational operators (<, <=, >, >=,
in, not in) are used, “logical” means that logical operators (and, or, xor) are used, and
“indexing” means that the type is used as an index in some array type.

If an <observed> property is given as parameter, only types that feature the property
are controlled, or those that do not feature the property if the <observed> is preceded by
“not”. If the <observed> is preceded by “ignore” the type is controlled irrrespectively of
the property, and the message does not mention it at all, while if it is preceded by “report”,
the message still mentions whether the <observed> is used or not.

Without parameters, the rule is equivalent to “ignore relational, ignore logical, ignore
indexing” (i.e. it controls all types that do not use any arithmetic operator).

This rule can be given only once for each combination of values of the parameters.

Ex:

-- Simply report types that don’t use arithmetic operators:

check no_operator_usage;

-- Do the same, but mention if indexing/logical ops are used:

check no_operator_usage (report indexing, report logical);

-- Find integer types that use only logical operators:

check no_operator_usage (logical);

-- Find integer types that don’t use artihmetic operators and are

-- not used for indexing nor in relational operators:

check no_operator_usage (not indexing, not relational);

5.35.3 Tips

An integer type that uses no operator at all is a good candidate to be replaced by an
enumerated type. A modular type where only logical operators are used is likely to be used
as a bit field or a set, and is a good canditate for being replaced by an array of booleans.

The rule does not make a distinction between predefined and user-defined operators. On
the other hand, only calls to operators are considered, operators used for example as actual
generic parameters in instantiations are not considered.

The rule applies also to private types whose full declaration is an integer type.

Chapter 5: Rules reference 95

5.36 Non Static

This rule controls that expressions used in certain contexts are static.

5.36.1 Syntax

<control_kind> non_static [(<subrule> {, <subrule>})];

<subrule> ::= constant_initialization | variable_initialization |

index_constraint | discriminant_constraint |

instantiation | index_check

5.36.2 Action

The <subrule> defines the elements that are required to be static:

• “constant initialization”: expressions used as initial value in constant declarations.

• “variable initialization”: expressions used as initial value in variable declarations.

• “index constraint”: expressions used in index constraints (aka array sizes).

• “discriminant constraint”: expressions used in discriminant constraints

• “instantiation”: expressions used as generic actual parameters in instantiations.

• “index check”: expressions used as indices must satisfy statically the index check. I.e.,
the expression needs not be static, but it should be statically provable that the index
check cannot fail.

If no keyword is given, all contexts are controlled.

Ex:

check non_static (index_constraint);

5.36.3 Limitations

Currently, “constant initialization” and “variable initialization” do not control structured
(record and array) variables. For access variables, the initial value is considered static only
if it is a plain null. This may improve in future versions of AdaControl.

5.36.4 Tips

If all index and discriminant constraints are static, the space occupied by data structures
is computable from the program text. This rule is useful to enforce this in contexts where
the memory space must be statically determined.

5.37 Not Elaboration Calls

This rule controls that certain subprograms (or allocators) are called only during program

initialization.

5.37.1 Syntax

<control_kind> not_elaboration_calls (<entity>|new {, <entity>|new});

Chapter 5: Rules reference 96

5.37.2 Action

The <entity> parameters are callable entities (procedure, function or entry calls). As usual,
the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada
entity name], page 145. This rule controls calls to the indicated callable entities, or allocators
if “new” is given, that are performed at any time except during the elaboration of library
packages.

Ex:

search not_elaboration_calls (Data.Initialize, new);

5.37.3 Limitations

Due to an (allowed by ASIS standard) limitation of ASIS-for-Gnat, the rule will not detect
calls to subprograms that are implicitely defined, like calling a "+" on Integer. Fortunately,
it is very unlikely that the user would want to forbid that kind of calls in non-elaboration
code.

Note also that calls that cannot be statically determined, like calls to dispatching oper-
ations or calls through pointers to subprograms cannot be detected either.

5.38 Not Selected Name

This rule controls that certain entities are always refered to using selected notation, even

in the presence of use clauses.

5.38.1 Syntax

<control_kind> not_selected_name

(<exception places>, <entity> {, <entity>});

<exception places> ::= none | unit | compilation | family

5.38.2 Action

A name is “selected” if it is prefixed by the name of the construct where it is declared. Only
one level of prefix is required, unless the prefix itself is the target of a not selected name
rule.

The first parameter specifies places where the rule is not enforced, i.e. where simple
notation is allowed:

• “none”: selected notation is always required.

• “unit”: selected notation is not required within the program unit where the entity is
declared.

• “compilation”: selected notation is not required within the compilation unit where the
entity is declared.

• “family”: selected notation is not required within the compilation unit where the entity
is declared, nor within its (direct or indirect) children.

Other parameters indicate the <entity> to which the rule applies. As usual, the whole
syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity name],
page 145.

Ex:

Chapter 5: Rules reference 97

check not_selected_name (unit, all Instance);

search not_selected_name (none, Pack.T);

5.38.3 Tip

Note that, as usual, the entity can be given in the form “all name”. This is especially useful
for types that must always be declared with a special name (like Instance, Object, T) and
are intended to be always used with the name of the enclosing package.

5.39 Object Declarations

This rule controls various aspects of object (constants and variables) declarations.

5.39.1 Syntax

<control_kind> object_declarations (min_integer_span, <min_spec>

{, <min_spec>});

<control_kind> object_declarations (type, <type_spec> {, <type_spec>});

<control_kind> object_declarations (volatile_no_address);

<control_kind> object_declarations (address_not_volatile);

<min_spec> ::= [constant | variable] <value>

<type_spec> ::= [constant | variable] <entity>

5.39.2 Action

The action depends on the subrule.

• “min integer span”: controls that every object of an integer type has a subtype that
covers at least the indicated number of values. Different values can be specified for
variables and constants; if no modifier (“constant” or “variable”) is supplied, the value
applies to both.

This subrule can be given only once for each combination of check/search/count and
constant/variable.

• “type”: controls every object whose (sub)type matches <entity>. As usual, the whole
syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity
name], page 145. If the <entity> is a subtype, only objects of that exact subtype are
controlled; if the <entity> is a type, objects declared with the type or any subtype of
it are controlled. The control can be restricted to only variables or only constants; if
no modifier (“constant” or “variable”) is supplied, both are controlled.

This subrule can be given only once for each combination of <entity> and
constant/variable.

• “volatile no address”: controls variables that are the target of a pragma volatile, but
have no address clause. Constants are not controlled, since it would be very strange to
have a volatile constant...

Since this subrule has no parameters, it can be given only once.

• “address not volatile”: controls variables that have an address clause, but are not the
target of a pragma volatile. Constants are not controlled, since it would be very strange
to have a volatile constant...

Since this subrule has no parameters, it can be given only once.

Chapter 5: Rules reference 98

Ex:

check object_declarations (min_integer_span, variable 5, constant 10);

count object_declarations (min_integer_span, 8);

-- Same value for variables and constants

search object_declarations (volatile_no_address);

search object_declarations (address_not_volatile);

5.39.3 Tip

The “min integer span” rule can be useful for detecting variables that should use an enu-
merated type rather than an integer type.

5.39.4 Limitation

Due to a shortcomming of the ASIS interface, the subrules “volatile no address” and “ad-
dress not volatile” will not detect variables of a class-wide type that are volatile due to a
pragma volatile applying to the class-wide type. If the pragma applies to the variable, the
subrule will work correctly. A pragma volatile applied to a class-wide type is detected by
the rule “uncheckable”. See Section 5.58 [Uncheckable], page 126.

Declaring a class-wide type as volatile seems very peculiar anyway...

5.40 Parameter Aliasing

This rule controls aliased use of variables in subprogram calls.

5.40.1 Syntax

<control_kind> parameter_aliasing [([with_in] <level>)];

<level> ::= Certain | Possible | Unlikely

5.40.2 Action

This rule identifies calls where the same variable is given as an actual to more than one out
or in out parameter, like in the following example:

procedure Proc (X, Y : out Integer);

...

Proc (X => V, Y => V);

If the modifier “with_in” is given, aliasing between out or in out parameters and in
parameters is also considered (unless the in parameter is of a user-defined by-copy type).
Although aliasing of in parameters is generally considered less of an issue, it can lead to
unexpected results when the parameter is passed by reference.

There are many cases where aliasing cannot be determined statically. The optional
parameter specifies how aggressively the rule will check for possible aliasings. Possible
values are (case irrelevant):

• Certain (default): Only cases where aliasing is statically certain are output.

• Possible: In addition, cases where aliasing may occur depending on the value of an
indexed component are output. These may or may not be true aliasing, depending on
the algorithm. For example, given:

Chapter 5: Rules reference 99

Swap (Tab (I), Tab (J));

there is no aliasing, unless I equals J.

If all expressions used for indexing in both variables are static, the rule will be able to
eliminate the diagnosis of aliasing (if the values are different). This avoids unnecessary
messages in cases like:

Swap (Tab (1), Tab (2));

• Unlikely: In addition, cases where aliasing may occur due to access variables pointing
to the same variable are output. These may or may not be true aliasing, depending on
the algorithm, but should normally occur only as the result of very strange practices,
like in the following example:

type R is
record

X : aliased Integer;

end record;
X : R;

Y : Access_All_Integer := R.X’access;

...

P (X, Y.all);

There will be no false positive with “Certain”. There will be no false negative with
“Unlikely” (but many false positives). “Possible” is somewhere in-between.

The rule may be specified at most once for each value of the parameter. This allows for
example to “check” for “Certain” and “search” for “Possible”.

Ex:

check parameter_aliasing (with_in certain);

search parameter_aliasing (Possible);

Note that the rule is quite clever: it will consider partial aliasing (like a record variable
as one parameter, and one of its components as another parameter), and will not be fooled
by renamings.

5.40.3 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not analyzed. Some calls
cannot obviously have aliasing (if there is only one parameter, or if there are no variables
in the parameters f.e.); other calls are detected by the rule “uncheckable”. See Section 5.58
[Uncheckable], page 126.

5.41 Parameter Declarations

This rule controls various characteristics of the declaration of parameters for all callable
entities (i.e. functions, procedures and entries).

5.41.1 Syntax

<control_kind> parameter_declarations (<subrule> [,<bounds>] {,<callable>});

<subrule> ::= all_parameters | in_parameters |

defaulted_parameters | out_parameters |

in_out_parameters | access_parameters |

Chapter 5: Rules reference 100

tagged_parameters | class_wide_parameters |

single_out_parameter

<bounds> ::= min|max <value> [, min|max <value>]

<callable> ::= function | procedure |

dispatching_function | dispatching_procedure |

protected_function | protected_procedure |

protected_entry | task_entry

5.41.2 Action

The first parameter is a subrule keyword. “single out parameter” has no parameter; all
other subrules require one or two bounds.

• “all parameters”: Controls callable entities whose number of parameters is less than
the given “min” or greater than the given “max”. “min” defaults to 0 and “max” to
infinity.

• “in parameters”, “out parameters”, “in out parameters”: Do the same, counting only
parameters of modes in, out, or in out respectively.

• “defaulted parameters”: Does the same, counting only parameters declared with an
explicit default expression.

• “access parameters”: Does the same, counting only (anonymous) access parameters.

• “tagged parameters”: Does the same, counting only parameters of a specific tagged
type.

• “class wide parameters”: Does the same, counting only parameters of a class-wide
type.

• “single out parameter”: Controls callable entities that have exactly one out parameter.
Procedures with a single out parameter might be candidates to becoming functions.

If one or more <callable kind> is specified after the <value>, the rule applies only to
the corresponding declaration(s), otherwise it applies to all callable entities. “dispatch-
ing function” and “dispatching procedure” allow different counts for dispatching subpro-
grams (i.e. primitive subprograms of a tagged type). If “dispatching function” or “dispatch-
ing procedure” is not explicitely specified, “function” (conversely “procedure”) applies also
to dispatching functions (conversely dispatching procedures).

This rule can be given once for each of check, search, and count for each subrule and
each kind of entity. This way, it is possible to have a level considered a warning (search),
and one considered an error (check).

Ex:

-- Callable entities should preferably not have more than 5

-- parameters, and in any case not have more that 10 parameters,

check parameter_declarations (all_parameters, max 10);

search parameter_declarations (all_parameters, max 5);

-- All functions must have parameters and no out or in out

-- parameters (allowed in Ada 2012):

check parameter_declarations (all_parameters, min 1, function);

check parameter_declarations (out_parameters, max 0, function);

Chapter 5: Rules reference 101

check parameter_declarations (in_out_parameters, max 0, function);

-- A regular (not protected) procedure with one out parameter

-- should be replaced by a function

check parameter_declarations (single_out_parameter, procedure);

-- Find all callable entities with class-wide parameters:

search parameter_declarations (class_wide_parameters, max 0);

-- Dispatching operations may have only one parameter of a tagged type:

check parameter_declarations (tagged_parameter,

max 1,

dispatching_function,

dispatching_procedure);

5.41.3 Tips

This rule applies to generic subprograms as well as to regular ones. On the other hand, it
does not apply to generic formal subprograms, since instantiations would only be possible
with subprograms which are supposed to have been already controlled.

Instantiations are also controlled; the number of parameters is taken from the corre-
sponding generic.

Note that this rule controls only “regular” parameters, not generic formal parameters.

Note that dispatching operations have necessarily at least one tagged parameter, al-
though a “max 0” could be specified in the example above. If you do this, all declarations
of dispatching subprograms will be controlled. Maybe that’s what you want...

5.42 Positional Associations

This rule controls the use of positional associations (as opposed to named associations) in
all kinds of associations.

5.42.1 Syntax

<control_kind> positional_associations [(<subrule>, <max_allowed>

[, <category> {, <entity>}])];

<subrule> ::= all | all_positional | same_type

<category> ::= [not_operator] call | pragma | discriminant |

instantiation | array_aggregate | record_aggregate |

enumeration_representation

5.42.2 Action

The rule controls pragmas, discriminants, calls, aggregates, or instantiations that use too
many positional associations. The definition of “too many” depends on the subrule:

• “all”: when positional associations are given in a place where there is more than
<max allowed> associations (both positional and named).

• “all positional”: when there is more than <max allowed> positional associations.

Chapter 5: Rules reference 102

• “same type”: when more than <max allowed> positional parameters are of the same
type.

In addition, a <category> can be specified to restrict the rule to specific kinds of asso-
ciations; if not specified, all associations are controlled. The categories carry their obvious
meaning, with the distinction that “array aggregate” applies only to “true” array aggre-
gates, while “enumeration representation” applies to the special array aggregate used in
enumeration representation clauses. Note that the “same type” subrule is not allowed for
the “pragma” category. For “pragma”, ”call”, and “instantiation”, entities can also be spec-
ified; such entities are exempted from the rule (i.e. the rule will not control these entities).
See examples below.

For calls, positional association is not reported for operators that use infix notation (since
named notation is not possible); in addition, if the “not operator” modifier is specified
before the “call” keyword (not allowed elsewhere), positional association is never reported
for operators, even if they are called with the syntax of a normal function call (i.e. Pack."+"
(A,B)). Calls to subprograms that are attributes are not reported either, since named
notation is not allowed for them.

This rule can be specified once for each combination of <subrule>, <category>, and <con-
trol kind>. This way, it is possible to have a number of positional associations considered
a warning (search), and one considered an error (check). Of course, this makes sense only
if <max allowed> for search is greater than the one for check. It is also possible to have
different criteria for each category.

If no parameter is given, it is equivalent to “positional_associations (all, 0)”, i.e.
all positional associations are controlled.

Ex:

-- All positional associations:

check positional_associations;

-- All positional associations in aggregates:

check positional_associations(all, 0, array_aggregate);

check positional_associations(all, 0, record_aggregate);

-- All positional associations with more than 3 elements:

search positional_associations (all, 3);

-- Positional associations in calls with more than 3 params of the same type

search positional_associations (same_type, 3, call);

-- Positional associations in calls with more than 2 elements (except

-- calls to any subprogram called Put)

search positional_associations(all, 2, call, all put);

5.42.3 Tips

There are two kinds of calls where the rule does not complain about usage of positional
association: infix operator calls (since requiring named notation would not allow infix nota-

Chapter 5: Rules reference 103

tion any more), and calls to subprograms that are attributes (since named notation is not
allowed for these).

For the purpose of the “same type” subrule, integer literals are considered of the same
type as any parameter of an integer type, and similarly for other universal values. The
reason is that this rule is intended to avoid confusion between parameters, when strong
typing would not detect an inversion of parameters for example; such a case would happen
between parameters of a universal type.

For calls, another rule controls positional associations according to the value of param-
eters rather than their number: See Section 5.24 [Insufficient Parameters], page 80.

5.43 Potentially Blocking Operations

This rule controls usage of potentially blocking operations (as defined in LRM 9.5.1 (8..16))
from within protected operations.

5.43.1 Syntax

<control_kind> potentially_blocking_operations;

5.43.2 Action

The rule follows the call graph, starting from every protected operation, and identifies all
(direct and indirect) potentially blocking operations encountered. All protected types in
the program are controlled.

Of course, calls to standard subprograms (notably IOs) that are defined to be potentially
blocking are recognized.

Ex:

check potentially_blocking_operation;

5.43.3 Tips

This rule is very clever at finding potentially blocking operations resulting from external
calls (or requeues) to the current protected object, even if this happens through a long chain
of subprogram calls. Typically, this happens when a protected operation calls a subprogram,
which in turn makes a call to an operation of the same protected object. Such calls generally
result in dead-locks.

Therefore, it is advisable to run this rule on any program that exhibits mysterious (and
hard to find) deadlocks that seem to involve protected objects.

When a single protected object is being analyzed, the rule will diagnose a circularity if
there is a call to an operation of the same object in the call chain; however, if a protected
type is being analyzed, the rule will diagnose a circularity if there is a call to any object of
the same type in the call chain. Although it is possible to construct examples of this latter
case where there is no risk of deadlock, it is so contrieved that it certainly deserves being
looked at. But since the call is not 100% certain to be potentially blocking, the message
will tell “possible external call” instead of “external call” in this case.

5.43.4 Limitation

There is one case defined in LRM E.4(17) which is not recognized: remote subprograms
calls.

Chapter 5: Rules reference 104

Calls through pointers to subprograms and dispatching calls are unknown statically;
they are assumed to be non potentially blocking. Such calls are detected by the rule
“uncheckable”. See Section 5.58 [Uncheckable], page 126.

5.44 Pragmas

This rule controls usage of one or several specific pragmas.

5.44.1 Syntax

<control_kind> pragmas (<pragma spec> {, <pragma spec>});

<pragma spec> ::= [multiple] all|nonstandard|<pragma name>

5.44.2 Action

If the special name “nonstandard” is given, then all implementation-defined and unrecog-
nized pragmas will be controlled. If the special name “all” is given, then all pragmas will
be controlled. Otherwise, the parameters are the names of pragmas to be controlled. Note
that <pragma name> must be the simple name of the pragma, since pragma names are
predefined and do not follow the rules for regular Ada entities.

If “multiple” is specified before the pragma spec (or the special name), the correspond-
ing pragma(s) are controlled only if they apply to multiple entities, because one of the
parameters is an overloaded name.

Ex:

check pragmas (elaborate_all, elaborate_body);

-- Search pragma Convention that apply to several entities:

search pragmas (multiple convention);

5.44.3 Tips

If “all” and/or “nonstandard” is given together with a specific pragma name in a “search”
or “check” rule, a message is issued only for the most specific occurrence. However, for
“count”, all appropriate occurrences are counted, i.e. given the following rules:

C1 : count pragmas (annotate);

C2 : count pragmas (nonstandard);

C3 : count pragmas (all);

Counter C1 will report the number of occurrences of pragma Annotate (a non-standard
GNAT pragma), counter C2 will report the number of non-standard pragmas (including
occurrences of Annotate), and counter C3 will report the total number of pragmas (including
occurrences of Annotate).

5.45 Record Declarations

This rule controls various aspects of the components of records.

5.45.1 Syntax

<control_kind> record_declarations (component, <compo_kind> {,<repr_cond>});

<compo_kind> ::= <entity>|<category>

Chapter 5: Rules reference 105

<category> ::= () | access | array | delta | digits | mod | private |

protected | range | record | tagged | task

<repr_cond> ::= [not] in_variant | aligned | initialized | packed | sized

5.45.2 Action

The first parameter is a subrule keyword:

• “Component” controls record components whose type is the indicated <entity>, or
whose type belongs to the indicated <category>. If the <entity> is a subtype, only
record components that are of that subtype are controlled. If the indicated <entity> is
a type, all record components that are of that type (including subtypes) are controlled.
The meaning of <category> is:

• “()”: The component is of an enumerated type.

• “access”: The component is of an access type.

• “array”: The component is of an array type.

• “delta”: The component is of a fixed point type (it is not currently possible to
distinguish ordinary fixed point types from decimal fixed point types).

• “digits”: The component is of a floating point type.

• “mod”: The component is of a modular type.

• “private”: The component is of a private type (including private extensions).

• “protected”: The component is of a protected type.

• “range”: The component is of a signed integer type.

• “record”: The component is of an (untagged) record type.

• “tagged”: The component is of a tagged type (including type extensions).

• “task”: The component is of a task type.

If <repr cond> are specified, the rule controls only record components to which all the
corresponding representation items apply:

• “in variant”: The component appears inside the variant part of the record.

• “not in variant”: The component appears inside the fixed part of the record.

• “aligned”: Either no component clause applies to the component, or the corre-
sponding first bit is a multiple of Storage_Unit.

• “not aligned”: A component clause applies to the component, and the correspond-
ing first bit is not a multiple of Storage_Unit.

• “initialized”: The component has a default initialization expression.

• “not initialized”: The component has no default initialization expression.

• “packed”: A pragma Pack applies to the component type.

• “not packed”: No pragma Pack applies to the component type.

• “sized”: A component clause applies to the component (therefore imposing the
size).

• “not sized”: No component clause applies to the component.

This rule can be specified several times for the “component” subrule.

Ex:

Chapter 5: Rules reference 106

-- All record components of a discrete type should be initialized:

check record_declarations (component, (), not initialized);

-- The size of all components of type Hardware_Types.Squeezed must

-- have a component clause:

check record_declarations (component, Hardware_Types.Squeezed, not sized);

-- Find unaligned components of a packed array type:

check record_declarations (component, array, packed, not aligned);

5.45.3 Tips

It may seem strange to have a rule with only one subrule, but we expect to add more in
the near future. Stay tuned...

5.45.4 Limitations

If “[not] aligned” is specified, there are some rare cases where AdaControl cannot evaluate
whether a component is aligned or not; in this case, it will “assume the worse” (i.e. report as
if the component had the specified alignment), thus creating possible false positives. Such
cases are detected by the rule “uncheckable”. See Section 5.58 [Uncheckable], page 126.

5.46 Reduceable Scope

This rule controls declarations that could be moved to some inner scope.

5.46.1 Syntax

<control_kind> reduceable_scope [(<subrule> {, <subrule>})];

<subrule> ::= {<restriction>} all | variable | constant |

subprogram | type | package |

exception | generic | use

<restriction> ::= no_blocks | to_body

5.46.2 Action

The rule reports on any declaration that is referenced only from a single, inner scope, or in
the case of use clauses, it will report on packages named in a use clause whose elements are
used only in a single, inner scope. For entitities declared in package specifications, the rule
reports if they are used only from the corresponding package body.

The initialization of an object is considered a usage of the object at the place where it is
declared, thus preventing it from being moved. Therefore, constants and initialized variables
are never reported as being movable to inner scopes; they are reported as being movable to
package bodies however. Entities that are used as prefixes of a ’Access or ’Address attribute
are never reported, since moving them would change their accessibility level. Similarly, task
objects are not reported since moving them would change their master. Finally, dispatching
operations (primitive operations of tagged types) are not reported either, since they can be
the target of an “invisible” (dispatching) call.

If no <subrule> is given, or the <subrule> is “all”, all declarations are controlled. If
no_blocks is specified in front of a <subrule>, the rule will not consider blocks as possible

Chapter 5: Rules reference 107

targets for a reduced scope for the corresponding category. If to_body is specified in front
of a <subrule>, the rule will report only elements declared in a package specification that
could be moved into the body. Specifying “all” explicitely is only useful in the case where
there is a <restriction>.

As a side effect, the rule will report about entities that are declared but not used (i.e.
whose scope reduces to nothing).

Ex:

-- Types and variables shall be declared in the innermost scope

-- where they are useful:

check reduceable_scope (variable, type);

-- Packages and subprograms shall be declared in the innermost

-- scope where they are useful, but they are not allowed in blocks:

check reduceable_scope (no_blocks subprogram, no_blocks package);

-- Use clause should be as restricted as possible:

search reduceable_scope (use);

5.46.3 Tips

If you think that use clauses are acceptable, but should be limited to the smallest possible
scope, you would generally specify:

check unnecessary_use_clause;

check reduceable_scope (use);

5.46.4 Limitation

Currently, the rule does not report use clauses declared in a package specification that could
be moved to the body. Such clauses appear as “unused” (but of course, the compiler will
complain on the body if the clause is removed).

5.47 Representation Clauses

This rule controls usage of representation clause.

5.47.1 Syntax

<control_kind> representation_clauses [(<subrule> {, <subrule>})];

<subrule> ::= {<category>} <repr_kw> | [global] [object] <attribute>

<repr_kw> ::=

at | at_mod | enumeration |

fractional_size | incomplete_layout | layout |

non_aligned_component | non_contiguous_layout | no_bit_order_layout |

overlay

<category> ::=

() | range | mod | delta | digits | array | record |

tagged | extension | access | new | private | task | protected

Chapter 5: Rules reference 108

5.47.2 Action

Without parameter, the rule controls all representation clauses, otherwise it will control the
representation clauses given as parameter.

If a representation keyword or attribute is preceded by one or several categories, the rule
controls only the representation items that apply to types belonging to the categories (the
type of the component for the non_aligned_component subrule):

• “()”: Enumerated types

• “range”: Signed integer types

• “mod”: Modular types

• “delta”: Fixed point types (no possibility to differentiate ordinary and decimal fixed
point types yet).

• “digits”: Floating point types

• “array”: Array types

• “record”: (untagged) record types

• “tagged”: Root tagged types

• “extension”: Type extensions (tagged derived types)

• “access”: Access types

• “new”: Derived types

• “private”: Private types

• “task”: Task types

• “protected”: Protected types

The meaning of the representation keywords is:

• “at” controls address clauses given in Ada 83 style (“for XXX use at”).

• “at mod” controls alignment clauses given in Ada 83 style (“for T use record at mod
XX;”).

• “enumeration” controls enumeration representation clauses.

• “fractional size” controls size clauses whose value is not an integral multiple of
System.Storage_Unit.

• “incomplete layout” controls record representation clauses that miss the specification
of some components of the record’s type.

• “layout” controls all record representation clauses, while “no bit order layout” controls
record representation clauses whose type is not also the target of a bit order attribute
specification (such types have a non-portable representation).

• “non aligned component” controls components that do not start on a storage unit
boundary. The message gives the offset (in bits) relative to the closest storage unit
boundary.

• “non contiguous layout” controls record representation clauses where there are unused
bits between components (or before the first component). A message is issued for each
“gap” between components. In addition, if a size clause is given for the type, the rule
will report if there are unused bits at the end of the component (i.e. the size clause is
bigger than the end of the last component). In the case of variant records, there can
be overlapping fields; the rule will control only the bits that belong to no variant at all.

Chapter 5: Rules reference 109

• “overlay” controls address clauses (given in either style), where the value given is the
’Address of some other element.

In addition to these keyword, any specifiable attribute can be given (including the ini-
tial “’”); the rule will control specifications of this attribute. If the modifier “global” is
given before the attribute, only attribute specifications for global entities are controlled.
If the modifier “object” is given before the attribute, only attribute specifications for
objects are controlled (as opposed to types for example). Note that double attributes
(like “’CLASS’INPUT”) can be given, and are considered different from the simple attribute
(“’INPUT”). It is of course possible to specify both.

Ex:

All_Addresses: check representation_clauses (at, ’address);

All_Input: check representation_clauses (’input, ’class’input);

Sized_Objects: check representation_clauses (object ’size);

count representation_clauses (’SIZE);

-- check layout clauses for derived types:

check representation_clauses (new layout);

-- check layout clauses for root tagged types and type extensions:

check representation_clauses (tagged extension layout);

5.47.3 Limitation

For the “fractional size” and “non contiguous layout” subrules, there are some rare cases
where AdaControl cannot evaluate the given size or elements of the record representation
clause, and thus not detect the corresponding situation. Such cases are detected by the rule
“uncheckable”. See Section 5.58 [Uncheckable], page 126.

5.47.4 Tips

The specifiable attributes (the ones that can be given as parameters to this rule) are
’Address, ’Size, ’Component_Size, ’Alignment, ’External_Tag, ’Small, ’Bit_Order,
’Storage_Pool, ’Storage_Size, ’Write, ’Output, ’Read, ’Input, and ’Machine_Radix.
See Ada Reference Manual 13.3(77).

Ada allows partial record representation clauses, i.e. it does not require all fields to be
specified. This means that if you add a field to a record and forget to update the associated
representation clause, there will be no compilation error. The “incomplete record” subrule
is handy for making sure that this does not happen.

Derived types with a representation clause may suffer an efficiency penalty, since calling
an inherited subrograms requires a change of representation. Representation clauses for
tagged types are dubious, since these types have hidden fields added by the compiler.

5.48 Return Type

This rule controls that certain form of types are not used for function results.

5.48.1 Syntax

<control_kind> return_type [(<subrule> {, <subrule>})];

Chapter 5: Rules reference 110

<subrule> ::= class_wide | limited_class_wide |

constrained_array | protected |

task | unconstrained_array |

unconstrained_discriminated | anonymous_access

5.48.2 Action

This rule controls functions whose return type belongs to one of the indicated type kinds:

• class_wide controls all class-wide types, while limited_class_wide controls only
limited class-wide types.

• constrained_array controls constrained array types

• unconstrained_discriminated controls types with discriminants (but not constrained
subtypes of such types)

• unconstrained_array controls unconstrained array types

• task controls task types, or composite types that include tasks as subcomponents.

• protected controls protected types, or composite types that include protected objects
as subcomponents.

• anonymous_access controls anonymous access types.

If no subrule is specified, all type kinds are controlled. Note that more than one kind may
apply to a type: for example, a function can return a class-wide type with discriminants
that includes tasks and protected objects as subcomponents. In this case, several messages
are issued for the same type.

Ex:

check return_type (unconstrained_discriminated, unconstrained_array);

5.49 Side Effect Parameters

This rule controls calls that may depend on the order of evaluation of parameters.

5.49.1 Syntax

<control_kind> side_effect_parameters (<entity> {, <entity>});

5.49.2 Action

This rule controls subprogram calls or generic instantiations where different actual param-
eters call functions known to have side effects. This is dangerous practice, since correct
behaviour may depend on a certain evaluation order of parameters, which is not specified
by the language.

All <entity> are functions that are assumed to interfere, i.e. the rule will signal if any
of these functions is called more than once in the parameters of a call. As usual, the whole
syntax for entities is allowed for <entity>. See Appendix A [Specifying an Ada entity name],
page 145.

It is allowed to give the name of a generic function, or of a function declared in a generic
package; in this case, all functions resulting from instantiations of these generics will be
considered.

Chapter 5: Rules reference 111

In the case of renamings, you must give the name of the original function; the rule will
work correctly if the call is made through a renaming of this function.

Ex:

check side_effect_parameters (F1);

check side_effect_parameters (G1, G2);

Here, F1 has a side effect, and the rule will signal if it is called more than once. G1 and
G2 are assumed to interfere, and therefore the rule will signal if either is called more than
once, or if both are called. However, having a call that mentions F1 and G2 is OK.

5.49.3 Limitation

Due to the size of internal structures, this rule may not be given more than 100 times.

Due to an unimplemented feature of ASIS-for-Gnat, this rule will not process defaulted
parameters, and hence not detect interferences due to calling a side-effect function through
the default value.

5.50 Silent Exceptions

This rule controls exception handlers that can cause exceptions to silently disappear.

5.50.1 Syntax

<control_kind> silent_exceptions (<element> {, <element>});

element ::= <control-item> | <report-item>

control-item ::= not | with <entity> | others

report-item ::= raise | explicit_raise | reraise | return |

requeue | <entity>

5.50.2 Action

The rule controls handlers that do not call one of the given subprograms (for example a
reporting procedure) nor perform other required operations, like returning, requeuing, or
re-raising an exception.

A parameter that starts with “not” or “with” is a <control-item> and defines wich
exceptions are controlled; the <entity> should be either an exception, or the name of a
library unit (in which case, it applies to all exceptions declared in the library unit). As
usual, the whole syntax for entities is allowed here. See Appendix A [Specifying an Ada
entity name], page 145. If the <entity> is (part of) a generic, then it applies to all exceptions
from all corresponding instantiations. If there is no <control-item>, then all exceptions are
controlled.

If several <control-item> are given, the ones with “with” add exceptions to the set of
controlled exceptions, and the ones with “not” remove exceptions, in order, starting from
the empty set if the first <control-item> is a “with”, or starting from the set of all exceptions
if the first <control-item> is a “not”. See examples below.

“when others” handlers are always controlled, unless there is an explicit “not others”
<control-item>. A “with others” <control-item> can be specified to check only “when
others” handlers.

The other parameters are <report-item> and define the constructs considered “report-
ing”. <entity> should correspond to an Ada callable entity or generic package; as usual,

Chapter 5: Rules reference 112

the whole syntax for entities is allowed here. See Appendix A [Specifying an Ada entity
name], page 145. If a generic procedure or function is given, then all corresponding instances
are considered reporting subprograms. If a generic package is given, any instantiation (in
an inner block of the handler) is considered reporting. In addition, the special names
“explicit raise”, “reraise”, “return” and “requeue” mark raise statements with an explicit
exception name, raise statements without an exception name, return statements (including
extended return statements), and requeue statements (respectively) as reporting. “raise” is
a shorthand for both “explicit raise” and “reraise”.

If “explicit raise” is given as a parameter, the procedure Ada.Exceptions.Raise_

Exception is automatically added to the list of procedures for both Check and
Search, unless it is explicitely specified as a parameter in a rule; and similarly
Ada.Exceptions.Reraise_Occurrence is added for “reraise”. This way, it is possible to
consider them as reporting procedures for Check (for example) and not for Search.

A handler where all exceptions are uncontrolled is not controlled at all (i.e. it is allowed
to be non reporting). Otherwise, the rule reports if the handler does not contain at least
one of the <report-item> in each possible path of the handler. If the <report-item> appear
only in if or case statements, but not in all possible paths, or if they appear only in the
body of loop statements, the rule will issue a message asking for a manual verification, since
it cannot be statically determined whether the proper treatment happens in every case.

Note that the purpose of this rule is to require the reporting calls to be “eye-visible”,
i.e. textually written in the exception handler. For example, the rule will accept a call to a
procedure inside the sequence of statements of a package body declared in some inner block;
however, it will not accept the same call if it is in the sequence of statements of a package
instantiation (unless the generic package is itself mentionned as reporting), because the call
is not “eye-visible”. For the same reason, a call to a reporting function which happens as
the default value of an omitted parameter in some other call will not be accepted.

This rule can be given once for each of check, search and count. This way, it is possible
to have a level considered a warning (search), and one considered an error (check).

Ex:

-- Make an error if exception is not reraised and does not call

-- Reports.Trace, but make it only a warning if the exception is an

-- IO exception or Constraint_Error:

check silent_exceptions (not ada.io_exceptions,

not standard.constraint_error,

raise,

reports.trace);

search silent_exceptions (raise, reports.trace);

-- check handlers that do not reraise the exception, except for

-- IO exceptions:

check silent_exceptions (not Ada.IO_Exceptions, reraise);

-- Same for predefined exceptions, except Constraint_Error:

check silent_exceptions (not Standard, with Standard.Constraint_Error,

reraise);

Chapter 5: Rules reference 113

-- Same for all exceptions named User_Error, wherever they are declared,

-- and no others

check silent_exceptions (with all User_Error, reraise);

-- Same for "when others" handlers

check silent_exceptions (with others, reraise);

5.50.3 Limitations

Currently, “return” includes all return statements. It would be nice to separate function
returns from procedure or accept returns. This is expected to be done in some future version
of AdaControl.

There are two cases that are not statically checkable, and thus may not be identified by
this rule: if an exception is raised in an inner block statement and handled locally, and if
the exception handler aborts the current task.

If a reporting function is given, there are a few cases where the calls will not be recognized:

• inside a pragma

• in a representation clause

• in a code statement (i.e. as a field of a machine code instruction)

This limitation is intentional: these are such weird places to call a reporting function
that it seems better to draw attention to it...

5.51 Simplifiable Expressions

This rule controls expressions that can be simplified in various ways.

5.51.1 Syntax

<control_kind> simplifiable_expressions [(<subrule> {, <subrule>})];

<subrule> ::= conversion | logical | logical_false | logical_not |

logical_true | parentheses | range

5.51.2 Action

Without parameters, all kinds of simplifiable expressions are controlled; otherwise, the
controlled expressions depend on the subrule:

• “conversion” controls type conversions where the expression is of a universal type (a
litteral or named number), or where the target subtype is either the same as the
expression’s subtype, or the first named subtype of the expression.

• “logical true” controls redundant boolean expressions of the form <expr> = True (or
/=), and “logical false” does the same for comparisons with false.

• “logical not” controls not operators whose argument is a comparison (which could be
inverted).

• “logical” is the same as specifying “logical true”, “logical false” and “logical not”.

Chapter 5: Rules reference 114

• “parentheses” controls unnecessary parentheses like those surrounding the expression
of an assignment, an “if” or a “case” statement, or those that are not required by
operators precedence rules.

• “range” controls expressions of the form T’First .. T’Last that should be T’range

(or even simply T).

This rule can be given at most once for each subrule.

Ex:

search simplifiable_expressions (parentheses);

check simplifiable_expressions (range, logical);

5.51.3 Tips

There are cases where parentheses may seem unnecessary, but are (purposedly) not reported
by this rule. Consider for example:

X := A + (B + C);

Removing the parentheses would change the expression to mean:

X := (A + B) + C;

If the "+" operator has be redefined and is no more associative, this would actually
change the meaning of the program. In a less contrieved example, note that:

X mod (A*B)

is not the same as:

X mod A * B

For these reasons, and to make the rule easier to understand for the user, the rule does
not report unnecessary parentheses between operators of identical priority levels.

Conversion of universal value is never necessary, however there are cases where over-
loading resolution may require the conversion to be replaced by a qualification, rather than
being simply removed.

5.52 Simplifiable Statements

This rule controls statements that can be removed or simplified in various ways without
changing the meaning of the program.

5.52.1 Syntax

<control_kind> simplifiable_statements [(<subrule> {, <subrule>})];

<subrule> ::= block | dead | handler | if | if_for_case |

if_not | loop | loop_for_while | nested_path | null

5.52.2 Action

Without parameter, all kinds of simplifiable statements are controlled; otherwise, the con-
trolled statements depend on the subrule:

• block controls block statements that have no labels, no declarations, and no exception
handlers.

Chapter 5: Rules reference 115

• dead controls dead code, i.e. statements that are statically known to be never executed.
This includes statements that follow a return, requeue, or goto statement, or an exit
statement that is either unconditional or whose condition is statically known to be
true. It includes also while statements and if statements (including elsif paths) whose
condition is statically false, and for loops whose range is statically empty.

• handler controls “trivial” exception handlers, i.e. handlers whose sequence of state-
ments includes only a single raise statement without an exception name. However, a
handler is not reported if there is also a non trivial handler for others. These examples
show the situation:

exception
when Constraint_Error => -- Reported (no when others)

raise;
end;

exception
when Constraint_Error => -- Reported (trivial when others)

raise;
when others => -- Reported

raise;
end;

exception
when Constraint_Error => -- Not reported (non trivial when others)

raise;
when others =>

Put_Line ("Error");

end;

• if controls if statements with an else path that contains only null statements (and can
thus be removed).

• if_for_case controls usage of if statements that could be replaced by case statements.
An if statement is assumed to be replaceable if it has at least one elsif and all conditions
are comparisons (or membership tests, possibly connected by logical operators) of the
same discrete variable with static values. Typically, this subrule will spot constructs
like:

if X = 1 then
...

elsif X = 2 or X = 3 or X = 4 then
...

elsif X >= 5 and X <= 10 then
...

elsif X in 11 .. 20 then
...

else
...

end if;

Chapter 5: Rules reference 116

• if_not controls if statements with an else path and no elsif path, and where the
condition is given in negative form (i.e. it is a not, or a "/=" comparison). Such
statements could be made positive (and thus less error-prone) by interverting the if
and else paths.

• nested_path controls paths from if statements that can be moved outside. This hap-
pens if the if has only then and else paths, and either of them ends with a “breaking”
statement (raise, return, exit or goto); in this case, the other path needs not be nested
inside the if statement. However, if both paths end with the same “breaking” state-
ment, no error is reported. In short, the rule signals the following examples:

if Cond then
return;

else
I := 1;

end if;

if Cond then
I := 1;

else
return;

end if;

because they can be changed to:

if Cond then
return;

end if;
I := 1;

if not Cond then
return;

end if;
I := 1;

The rule will not signal the following example, where both paths end with the same
“breaking” statement (return), because it would break the symetry of the statement:

if Cond then
return 1;

else
return 2;

end if;

• null controls null statements that serve no purpose and can be removed. Note that if
a null statement carries a label, it is not considered simplifiable.

• loop controls while loop statements where the condition is a plain True, and can thus
be changed to simple loops.

• loop_for_while controls simple loop statements whose first statement is an exit (for
the same loop), and which can therefore be turned into a while loop.

This rule can be given at most once for each subrule.

Ex:

Chapter 5: Rules reference 117

check simplifiable_statements (block, null);

search simplifiable_statements (if);

5.52.3 Tips

loop may seem a strange thing to check, since no Ada programmer is supposed to write
this. However, experience shows that it is a good indicator of code written by people who
did not get proper Ada training. Such code is certainly worth a peer review...

5.53 Statements

This rule controls usage of certain Ada statements.

5.53.1 Syntax

<control_kind> statements (<subrule> {, <subrule>};

<subrule> ::=

any_statement | abort |

accept | accept_return |

assignment | asynchronous_select |

block | case |

case_others | case_others_null |

code | conditional_entry_call |

declare_block | delay |

delay_until | dispatching_call |

effective_declare_block | entry_call |

entry_return | exception_others |

exception_others_null | exit |

exit_expanded_name | exit_for_loop |

exit_outer_loop | exit_plain_loop |

exit_while_loop | exited_extended_return |

extended_return | for_in_loop |

for_iterator_loop | for_of_loop |

function_return | goto |

if | if_elsif |

inherited_procedure_call | labelled |

loop_return | multiple_exits |

named_exit | no_else |

null | procedure_return |

raise | raise_locally_handled |

raise_nonpublic | raise_standard |

redispatching_call | reraise |

requeue | selective_accept |

simple_block | simple_loop |

terminate | timed_entry_call |

unconditional_exit | unnamed_block |

unnamed_exit | unnamed_loop_exited |

unnamed_for_loop | unnamed_multiple_loop |

Chapter 5: Rules reference 118

unnamed_simple_block | unnamed_simple_loop |

unnamed_while_loop | untyped_for |

while_loop

5.53.2 Action

Subrules that are Ada keywords control the corresponding Ada statements. The meaning
of other subrules is as follows:

• any_statement controls all statements. This is of course not intended to forbid all
statements in a program (!), but counting all statements can be quite useful.

• accept_return controls return statements that return from an accept statement,
entry_return controls return statements that return from a (protected) entry body,
and procedure_return controls return statements that return from a procedure.
loop_return controls return statements (including extended return statements) that
appear inside a loop statement.

• assignment controls all assignment statements.

• asynchronous_select controls the select ... then abort statement. conditional_

entry_call controls the select ... else statement. timed_entry_call controls the
select ... or delay statement. selective_accept controls the regular select statement.

• block controls all block statements, while unnamed_block controls blocks without a
name, declare_block controls blocks with an explicit declare (even if the declarative
part is empty), and effective_declare_block controls blocks with a declarative part
that includes anything else than use clauses and pragmas. simple_block controls
block statements that have no declarative part (or an empty declarative part) and no
exception handlers, and unnamed_simple_block does the same, but only for blocks
without a name.

• case controls all case statements.

• case_others controls any when others path in a case statement, while case_others_
null controls only when others paths in a case statement that contain only null state-
ments.

• code controls code statements.

• delay controls only relative delay statements, while delay_until controls absolute
delay until statements.

• dispatching_call controls all dispatching calls. Note that this subrule controls dis-
patching procedure calls as well as dispatching function calls, although the latter is
technically an expression and not a statement. redispatching_call does the same,
but only for dispatching calls that are (directly or indirectly) inside a primitive opera-
tion of a tagged type.

• entry_call controls all entry call statements, including those that are part of a con-
ditional or timed entry call statement.

• exit controls all exit statements, while exit_for_loop, exit_while_loop, and exit_

plain_loop control exit statements that terminate for loops, while loops, and plain
(neither for nor while) loops, respectively. unconditional_exit controls exit state-
ments without a when condition. multiple_exits controls loop that have more than
one exit statement. unnamed_loop_exited controls exit statements that terminate an

Chapter 5: Rules reference 119

unnamed loop. exit_outer_loop controls exit statements that exit from an outer
loop (i.e. not the innermost one). exit_expanded_name controls named exit state-
ments where the name is given as an expanded name.

• exception_others controls any when others exception handler, while exception_

others_null controls only when others exception handlers that contain only null state-
ments.

• extended_return controls extended return statements (i.e. the Ada 2005 construct
“return V : T do ... end return”). exited_extended_return controls extended re-
turn statements that can be left without actually returning due to an exit or goto
statement within their sequence of statements.

• for_loop controls all for loops, while for_in_loop controls only the traditional form
of for loop (for I in range loop), for_iterator_loop controls the iterator form (for I
in Iterator loop), and for_of_loop controls the components form (for V of ... loop)
(the three latter forms are not available with the old gnat version of AdaControl).

• function_return controls return statements (including extended return statements)
from functions. Obviously, return statements cannot be forbidden in functions; this
keyword controls that there is only one return statement in the body of functions,
and at most one return statement in each exception handler of the exception part of
functions.

• if controls all if statements.

• if_elsif controls if statements that have at least one elsif.

• inherited_procedure_call controls calls to procedures that have been inherited by
a derived type and not redefined.

• labelled controls statements with a label (true statement labels, not block and loop
names).

• named_exit controls exit statements with a loop name.

• no_else controls if statements that have no else path.

• null controls all null statements.

• raise controls all raise statements.

• reraise controls raise statements in exception handlers that reraise the same exception,
and calls to the Ada.Exceptions.Reraise_Occurrence procedure.

• raise_standard controls raise statements that raise one of the predefined exceptions
(those declared in package Standard). raise_nonpublic controls statements that raise
exceptions that are neither predefined nor defined in the visible part of a package which
is the enclosing library unit of the statement. raise_locally_handled controls state-
ments that raise an exception which is handled by a handler in the same subprogram
body as the statement.

Note that for these subrules, the exception can be raised either by a raise statement, or
by a call to Ada.Exceptions.Raise_Exception where the raised exception is statically
determinable.

• simple_loop controls simple loops, i.e. those that are neither while nor for loops.

• unnamed_exit controls exit statements without a loop name that exits from a named
loop.

Chapter 5: Rules reference 120

• unnamed_for_loop, unnamed_simple_loop, and unnamed_while_loop control loops
of the given kind that are not named.

• unnamed_multiple_loop controls nested loops that are not named (i.e. under this
rule, only loops that contain no inner loop, and are not nested in another loop, are
allowed not to be named). The kind of loop (plain, for, while) is not considered.

• untyped_for controls for loops that use a range without an explicitely named type
(i.e. for I in 1..10 loop). Using a ’Range attribute is OK.

• while_loop controls all while loops.

Ex:

search statements (delay);

check statements (goto, abort);

check statements (case_others_null, exception_others_null);

5.53.3 Tips

It may seem strange to control things like if or case statements, since no coding standard
would prohibit their use. However, this may be useful, especially with “count”, for statistical
purposes, like measuring the ratio of if to case statements.

The plain “raise” subrule controls the raise statement, and only this one. If you want
to check all places where exceptions can be raised, use also the “entities” rule like this:

"all raise": check statements (raise),

check entities (Ada.Exceptions.Raise_Exception,

Ada.Exceptions.Reraise_Occurrence);

Other subrules of the “raise” family are more about which kind of exception is be-
ing raised, and therefore control also exceptions raised by calling the procedures from
Ada.Exceptions.

“inherited procedure call” controls only procedure calls. For function calls, see rule
Section 5.18 [Expressions], page 67.

5.54 Style

This rules controls usage of various “general” Ada coding style.

5.54.1 Syntax

<control_kind> style;

<control_kind> style (casing_attribute, <casing_kw> {,<casing_kw>});

<control_kind> style (casing_identifier, <casing_kw> {,<casing_kw>});

<control_kind> style (casing_keyword, <casing_kw> {,<casing_kw>});

<control_kind> style (casing_pragma, <casing_kw> {,<casing_kw>});

<control_kind> style (compound_statement);

<control_kind> style (default_in);

<control_kind> style (exposed_literal, <type_kw>, {, <value_place>});

<control_kind> style (formal_parameter_order {, <mode list>});

<control_kind> style (multiple_elements {,<element_kw>});

<control_kind> style (negative_condition);

<control_kind> style (no_closing_name [, <max_lines>]);

Chapter 5: Rules reference 121

<control_kind> style (numeric_literal, [not] <base> [, <block_size>]);

<control_kind> style (parameter_order {, <mode list>});

<control_kind> style (renamed_entity);

<casing_kw> ::= uppercase | lowercase | titlecase | original

<element_kw> ::= [flexible] clause | declaration | statement |

handler | begin | end | then | when |

else | is | loop | do | keywords

<mode_list> ::= <mode> {| <mode>}

<mode> ::= in | defaulted_in | access | in_out | out |

type | procedure | function | package

<type_kw> ::= integer | real | character | string

<value_place> ::= <value> | <place>

<value> ::= [max] <integer number> | <real number> | "<pattern>"

<place> ::= constant | exponent | index | number | pragma |

repr_clause | var_init | type

5.54.2 Action

The first parameter specifies which style aspect is to be checked:

• “casing attribute”, “casing keyword”, “casing identifier”, and “casing pragma” con-
trol that attributes (respectively keywords, identifiers, or pragmas) use the appropriate
casing. “original” (which is allowed only for identifiers) means that identifiers must use
the same casing as in their declaration.

If more than one <casing kw> is given, it means that any of them is allowed.

• “compound statement” controls that compound statements span at least a minimum
number of lines: 3 for if statements, loop statements, block statements, and accept
statements with a body; 4 for case statements, selective accept statements, and timed
entry call statements; and 5 for conditional entry call statements and asynchronous
select statements.

• “default in” controls subprograms, entries and generics declarations that omit an ex-
plicit inmode for a parameter. Access parameters are not reported, since an an explicit
in is not allowed in that case.

• “exposed literal” controls the usage of literals (aka “magic values”), that appear out-
side of allowed places. The second parameter tells to which kind of literals the rule
applies. The (optional) indicated values that follow are allowed at any place; for inte-
gers, a single value can be preced by “max”, to indicate that all literals whose (absolute)
value is less or equal are allowed; for strings, the values are regular expressions. See
Appendix B [Syntax of regular expressions], page 149. Commonly allowed values are
0 and 1 for integer literals, 1.0 and 0.0 for real literals and "^$" (the empty string) for
string literals. At most 20 values of each kind may be specified. In addition, one or
several <place> keyword can be used to specify constructs where any literal is allowed:
“declaration” stands for any declaration, “constant” for constant declarations, “expo-
nent” for the right parameter of an exponentiation (i.e. "**") function call, “index”
for array indexing, “number” for named number declarations, “pragma” for pragma
arguments, “repr clause” for representation clauses, “type” for type (and subtype) dec-
larations, and “var init” for the initialization expression of variable declarations. If no

Chapter 5: Rules reference 122

<place> is given, it is taken as number, constant, i.e. any literal is allowed in named
numbers and constant declarations.

• “multiple elements” controls clauses, declarations, statements, and handlers that do
not start on a line of their own (i.e. when there are more than one of these on the same
line). Similarly, begin, end, then and when are required to be on a line of their own,
together with the possible keyword or identifier attached to them and the semi-colon.
In addition, the is, loop or do that terminates the first part of some declarations or
statements is required to be on the same line as the begining of the element, or on a
line of its own.

Extra parameters specify which kind of element to check; if not specified, all kind of
elements are controlled. “keywords” is a shorthand for specifying all keywords. If
“flexible” is specified in front of “clause” (not allowed otherwise), it allows a use clause
to be on the same line as a with clause, provided all packages named in the use clause
are also named in the preceding with clause.

• “negative condition” controls “if” statements with an “else” part and no “elsif”, where
the condition starts with a not, and should therefore preferably be expressed positively.

• “no closing name” controls declarations, like package or subprograms, that allow (but
do not require) repeating the name at the end of the declaration, and where the closing
name is omitted (which is considered bad style in general). However, it can be accept-
able to allow the omission of closing names for very short constructs; therefore this
rule has an optional parameter specifying the maximum number of lines of a construct
for which omitting the closing name is allowed. This rule can be given only once for
each of check, search and count. This way, it is possible to have a length considered
a warning (search), and one considered an error (check). Of course, this makes sense
only if the length for search is less than the one for check. If no length is specified, all
occurrences of missing closing names are signaled.

• “numeric literal” controls the presentation of numeric literals, depending on the base
(wich, as required by Ada rules, must be in the range 2..16). If “not <base>” is specified
as the second parameter, the given base may not be used for based literals. Otherwise,
there must be a third (integer) parameter to specify the size of blocks of digits for that
base, i.e. there must be an underscore character to separate digits every <block size>
position. Typically, <block size> is 3 for base 10, 4 for base 2, etc.

• “parameter order” and “formal parameter order” control the order of the declarations
of parameters or generic formal parameters, respectively. Each parameter of the rule
consists in one or several of the “mode” keywords, and describes, in order, which kind
of parameter is allowed. All modes not specified explicitely are allowed after the ones
that are specified. See examples below.

If no parameter is given, the order for regular parameters is “in” or “access” first,
then “in out”, then “out”, then “defaulted in”. The order for formal parameters is
“type” first, then “in” “defaulted in” and “access”, then “in out”, then “procedure”
and “function”, then “package”.

• “renamed entity” controls occurrences of identifiers within the scope of a renaming
declaration for them; i.e. it enforces that when an entity has been renamed, the original
name should not be used anymore.

Ex:

Chapter 5: Rules reference 123

search style (no_closing_name);

search style (no_closing_name, 5);

check style (casing_identifier, original);

check style (default_in);

check style (numeric_literal, 10, 3);

check style (exposed_literal, integer, 0, 1);

check style (exposed_literal, real, 0.0, 1.0);

-- in parameters (with or without default) and access

-- parameters must be first, then in out parameters, then

-- out parameters. In parameters are allowed last if they

-- have defaults.

check style (parameter_order,

in | defaulted_in | access,

in_out,

out

defaulted_in);

-- For generics, formal objects must come first, then formal

-- types, then formal subprograms, then formal package:

check style (formal_parameter_order,

in | in_out,

type,

procedure | function,

package);

Without parameter, the rule will control all style aspects with parameter values that
correspond to the most commonly used cases, i.e. it is equivalent to the following:

style (no_closing_name);

style (casing_attribute, titlecase);

style (casing_keyword, lowercase);

style (casing_identifier, original);

style (casing_pragma, titlecase);

style (default_in);

style (negative_condition)

style (multiple_elements)

style (literal, 10, 3);

style (exposed_literal, integer, 0, 1)

style (exposed_literal, real, 0.0, 1.0);

5.54.3 Tips

For the “Casing Identifier” subrule, if the value is “original”, subprogram and parameter
names from the body are checked against those from the specification (if any). This is what
the user would expect, although strictly speaking it is not a usage of the name.

Note that operators always follow the casing rule for keywords, even for calls that use
the infix notation (i.e. in "and"(A, B)).

Chapter 5: Rules reference 124

Having more than one allowed casing is useful if for example you want to require Ti-
tlecase, but accept that the original casing be used (maybe because your editor or pretty-
printer forces it).

For the “Exposed Literal” subrule, negative values can be specified as being allowed;
negative numbers are handled as if they were literals. This is what the casual user would
expect, but to the language lawyer, “-1” is not a negative literal, it is a unary minus operator
applied to the positive value “1”.

“compound statement” was a simplistic way of finding badly laid-out statements, at a
time when “multiple elements” did not control the end or intermediate parts of declarations
and statements. It is of little use now that “multiple elements” has been enhanced.

5.54.4 Limitations

If a predefined operator or an attribute is renamed, the “renamed entity” subrule cannot
check that the original entity is not used in the scope of the renaming. Such cases are
detected by the rule “uncheckable”. See Section 5.58 [Uncheckable], page 126.

5.55 Terminating Tasks

This rule controls tasks that can terminate.

5.55.1 Syntax

<control_kind> terminating_tasks

5.55.2 Action

A task is considered a terminating task if its last statement is not an unconditional loop, or
this if this loop is exited. It is also considered terminating if it contains a selective accept
with a terminate alternative.

Since this rule has no parameters, it can be given only once.

Ex:

check terminating_tasks;

5.55.3 Tips

There is still one case where a task terminates, which is not reported by this rule: when a
task is aborted. This is intended, since there are cases (like mode changes) where a logically
non-terminating task is aborted.

If aborts are also to be reported, use the rule “statements (abort)”. See Section 5.53
[Statements], page 117.

5.56 Type Initial Values

This rule controls that a special constant is declared together with each type, for example
to serve as a default initial value.

5.56.1 Syntax

<control_kind> type_initial_values [("<pattern>")];

Chapter 5: Rules reference 125

5.56.2 Action

This rule controls types that do not feature an initialization constant declared in the same
declarative part as the type. If no <pattern> is given, any constant is considered an ini-
tialization constant for its type; otherwise, only constants whose name matches the given
pattern are considered initialization constants.

Ex:

check type_initial_values ("^C_Init_");

The above example will ensure that every declared type features a constant of the type
whose name starts with “C Init ”.

5.57 Type Usage

This rule controls usage of indicated types, either individually or by category.

5.57.1 Syntax

<control_kind> type_usage (<attribute>, <category> {, <aspect>}]);

<control_kind> type_usage (index, <entity>|<category> {, <aspect>}]);

<category> ::= () | access | array | delta | digits |

mod | protected | range | record | tagged | task

<aspect> ::= [not] representation | pack | size | component_size

5.57.2 Action

If the first parameter is an attribute (a name starting with a simple quote), the rule con-
trols all occurrences of the attribute where the prefix designates a type belonging to the
<category> given as second parameter.

If the first parameter is “index”, the rule controls all array types that have an index of
the type given by <entity>, or belonging to the <category> given as second parameter. As
usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Specifying an
Ada entity name], page 145.

For both subrules, if one or several <aspect> are given, only types featuring (or not
featuring if “not” is given) the provided aspects are controlled.

The meaning of <category> is:

• “()”: The type is an enumerated type.

• “access”: The type is an access type.

• “array”: The type is an array type.

• “delta”: The type is a fixed point type (it is not currently possible to distinguish
ordinary fixed point types from decimal fixed point types).

• “digits”: The type is a floating point type.

• “mod”: The type is a modular type.

• “protected”: The type is a protected type.

• “range”: The type is a signed integer type.

• “record”: The type is an (untagged) record type.

• “tagged”: The type is a tagged type (including type extensions).

Chapter 5: Rules reference 126

• “task”: The type is a task type.

The meaning of <aspect> is:

• “representation”: the type has an enumeration representation clause or a record rep-
resentation clause.

• “pack”: the type is the target of a pack pragma.

• “size” and “component size”: the type has the corresponding attribute specified.

Ex:

-- Don’t use the ’Pos attribute for enumerated types with a representation

check type_usage (’Pos, (), representation);

-- Don’t use modular type for array indexes

check type_usage (index, mod);

5.57.3 Tips

The subrule “index” controls the use of a type as an index at any position and irrespectively
of the number of indices of the array. To control a precise pattern of types used as indices,
use the rule “array declarations”. See Section 5.3 [Array Declarations], page 40.

The subrule that uses attribute names does not allow an <entity>. To control occurrences
of an attribute on a precise type, use the rule “entities”. See Section 5.15 [Entities], page 62.

5.58 Uncheckable

This rules controls cases where it is not possible to guarantee the accuracy of checks per-
formed by AdaControl, and where manual inspection may be required.

5.58.1 Syntax

<control_kind> uncheckable [(<subrule> [,<subrule>])];

<subrule> ::= false_positive | false_negative | missing_unit

5.58.2 Action

If the keyword “missing unit” is given, this rule controls missing units, i.e. units given on
the command line that are not found (and therefore not controlled) will result in an usual
error message.

Otherwise, this rule controls constructs that are not static and prevent other rules from
being fully reliable. This rule is special, since it really affects the way other rules behave
when they encounter a statically uncheckable construct. Therefore, if a label is given, the
message will include the label as usual, with an indication of the rule that triggered the
message; if no label is given, the message will include the name of the rule that detected
the uncheckable construct, not “uncheckable” itself.

If the keyword “false negative” is given, the rule will control constructs that could result
in false negatives, i.e. possible violations that would go undected, while if the keyword
“false positive” is given, it will control constructs that could result in false positives, i.e.
error messages when the rule is not really violated. If no keyword is given, both occurrences
are controlled.

Chapter 5: Rules reference 127

As far as statistics are concerned (see Section 4.2.1 [Control kinds and report messages],
page 28), “uncheckable” messages from rules are counted under the corresponding rule’s
statistics (like other messages), but there will be also a count of all “uncheckable” messages
under the rule “UNCHECKABLE”, and also subtotals corresponding to the number of
“uncheckables” for each rule.

This rule can be given only once for each of value of the parameters.

Ex:

check uncheckable (false_negative);

search uncheckable (false_positive);

check uncheckable (missing_unit);

5.58.3 Tips

This rule is especially important when AdaControl is used in safety critical software, since
it will detect constructs that could escape verification. Such constructs should be either
disallowed, or require manual inspection. On the other hand, in casual software, it may lead
to many messages, since for example dispatching calls are uncheckable with many rules.

5.58.4 Limitation

With “missing unit”, the message does not include a reference to a source location, since
there is no place in the source which can be considered as the origin of the error. If you
run AdaControl from GPS, there will always be a separate category (“Uncheckable”) in the
locations window, under which the message will appear, with a file name of “none”. Don’t
try to click on the error message, since GPS will find no file named “none”!

5.59 Unit Pattern

This rule controls various usage patterns of program units and elements declared in them.

5.59.1 Syntax

<control_kind> unit_pattern (Single_Tagged_Type);

<control_kind> unit_pattern (Tagged_Type_Hierarchy);

<control_kind> unit_pattern (Context_Clauses_Order {, <clause_list>});

<control_kind> unit_pattern (Declarations_Order, <target>,

{, <declaration_list>});

<clause_list> ::= <clause> {| <clause>}

<clause> ::= with | use | use_type | pragma

<target> ::= package_public | package_private | package_body |

subprogram

<declaration_list> ::= <declaration> {| <declaration>}

<declaration> ::= use | use_type |

use_all_type | number |

constant | variable |

private_type | full_type |

subtype | subprogram_spec |

package_spec | generic_subprogram_spec |

Chapter 5: Rules reference 128

generic_package_spec | task_spec |

protected_spec | subprogram_body |

package_body | generic_subprogram_body |

generic_package_body | task_body |

protected_body | object_renaming |

subprogram_renaming | package_renaming |

exception_renaming | subprogram_instantiation |

package_instantiation | exception |

others

5.59.2 Action

The checked pattern depends on the given subrule:

• “single tagged type” controls that at most one tagged type is declared in any package.

• “tagged type hierarchy” controls that tagged types follow packages hierarchy, i.e. that
the parent of a type extension (derivation of a tagged type) is declared in the parent
unit of the one that declared the derivation.

• “context clauses order” controls the order of context clauses (and pragmas) given on
top of the unit. Each parameter of the rule consists in one or several of the <clause>
keywords, and describes, in order, which kind of clause is allowed. Note that “use type”
covers only the regular use type clause, specify also “use all type” to include the Ada
2012 use all type clause as well. Note that all <clause>s not specified explicitely have
no place, and thus are not allowed at all.

• “declarations order” controls the order of declarations (and use clauses) given in various
parts, depending on the second parameter:

• “package public” controls elements in the visible part of a package specification;

• “package private” controls elements in the private part of a package specification;

• “package body” controls elements in the body of a package;

• “subprogram” controls elements in the body of subprograms (procedures and func-
tions) and entries.

Each parameter of the rule consists in one or several of the <declaration> keywords, and
describes, in order, which kind of declaration is allowed. Note that all <declaration>s
not specified explicitely have no place, and thus are not allowed at all, unless “others”
is given as the last parameter, in which case it covers all elements not part of any of
the preceding parameters. See example below.

Ex:

check unit_pattern (single_tagged_type);

check unit_pattern (tagged_type_hierarchy);

-- All with clauses must come first, then use and use type clauses

-- (freely mixed), then pragmas

check unit_pattern (context_clauses_order, with, use | use_type | use_all_type, pragma);

-- In the public part of a package, declare constants and named numbers

-- first,then private types, then any of regular types, constants, and

Chapter 5: Rules reference 129

-- variables, then subprograms specifications (including generics and

-- instantiations), then anything else:

check unit_pattern (declarations_order, package_public,

number | constant,

private_type,

full_type | constant | variable,

subprogram_spec | generic_subprogram_spec | subprogram_instantiation,

others);

5.59.3 Tips

For “context clauses order” and “declarations order”, elements given as part of the same
parameter (i.e. with a vertical bar between them) can be freely mixed, then followed by
any of the elements of the next parameter, etc. An element may appear several times in
different parameters. If the last parameter is “others”, any element not mentionned at all
is allowed after the ones for which you specify an order; this way, it is possible to specify
an order for just some elements, and then don’t care for the rest.

Expression functions and null procedures are classified as “subprogram spec” unless
they are the completion of an explicit specification, in which case they are classified as
“subprogram body”.

If you don’t want a declaration to appear at all, you can also use the rule “declarations”.
See Section 5.10 [Declarations], page 50.

5.60 Units

This rule controls that all necessary units, and only those, are processed by AdaControl.

5.60.1 Syntax

<control_kind> units [(<subrule> [,<subrule>])];

<subrule> ::= unreferenced | unchecked

5.60.2 Action

If the keyword unreferenced is given, the rule controls compilation units that are part of
the set of analyzed units, but withed by no other unit. If the keyword unchecked is given,
the rule controls compilation units that are withed by other unit(s), but not part of the set
of controlled units (except standard units).

This rule can only be given once for each of the subrules.

Ex:

check units (unchecked);

search units (unreferenced);

5.60.3 Tip

The main program will appear as unreferenced, since it is normally part of the controlled
units, and not withed by any other unit. As usual, the corresponding message can be
disabled by putting the comment:

--## rule line off units

on the main program.

Chapter 5: Rules reference 130

5.61 Unnecessary Use Clause

This rule controls use clauses that do not serve any purpose.

5.61.1 Syntax

<control_kind> unnecessary_use_clause [(<subrule> {,<subrule>})];

<subrule> ::= unused | qualified | operator | nested | movable

5.61.2 Action

The rule controls use clauses that can safely be removed, moved, or changed to a use type
clause. This happens in the following cases:

• “unused”: a use clause is given, but no element from the corresponding package is
mentionned in its scope. The message starts with “unused:”.

In this case, the use clause can safely be removed.

• “qualified”: a use clause is given, but all elements from the corresponding package
are refered to using a qualified name (i.e. prefixed by the name of the package). The
message starts with “all uses qualified:”.

In this case, the use clause can safely be removed, but you may want to keep it for
documentation purposes, since the package is actually used within this scope.

• “operator”: a use clause is given, but the only elements that do not use a qualified
name are operators. The message starts with “only used for operators:”.

In this case, and except for some pathological cases (definition of operators that are
not primitive operations of the corresponding type), the use clause can be replaced by
one or several use type clause(s).

• “nested”: a use clause is given within the scope of an enclosing use clause for the same
package. The message tells the location of the other use clause.

If you also have a message that the outer use clause is unnecessary, this means that all
references to the package appear inside the inner use clauses, and that the outer one
can be removed. If not, you can either remove the inner use clauses, or remove the
outer one and add more local use clauses where necessary.

• “movable”: a use clause is given in a package specification, but all uses are from the
corresponding body. The message starts with “use clause can be moved to body:”.

In this case, the use clause can safely be moved to the body, unless it appears in a
library package, and there are unqualified references to its elements from child units.

If no parameter is given, all cases are controlled, otherwise only cases corresponding to
the specified keyword(s) are controlled. This rule can be given only once for each value of
the parameters.

Ex:

remove: search unnecessary_use_clause (unused);

use_type: check unnecessary_use_clause (operator);

5.61.3 Tip

This rule checks only usage of use clauses. The rule “reduceable scope” can be used to
check that use clauses do not span unnecessarily to wide a scope. See Section 5.46 [Reduce-
able Scope], page 106.

Chapter 5: Rules reference 131

5.61.4 Limitations

There are some rare cases where the rule may signal that a use clause is not necessary,
where it actually is. There is no risk associated to this since if you remove the use clause,
the program will not compile.

The first one comes from a limitation of the ASIS standard: if the only use of the use
clause is for making the “root” definition of a dispatching call visible.

The second one comes from a limitation in ASIS-for-Gnat. This happens when the only
use of the use clause is for making an implicitely declared operation (an operation which is
declared by the compiler as part of a type derivation) visible, and when:

• the operation is the target of a renaming declaration;

• or the operation is passed as an actual to a generic instantiation;

• or all operands of the operation are universal (i.e. untyped).

Since these problems come from intrinsic limitations of ASIS, there is nothing we can
do about it. When this happens, you can disable the unnecessary use clause rule using the
line (or block) disabling feature. See Section 4.2.4 [Disabling controls], page 30. Note that
for the third alternative of the second case, you can also qualify one of the parameters, so
it is not universal any more.

5.62 Unsafe Elaboration

This rule controls (generic) packages that may be subject to elaboration order dependencies.

5.62.1 Syntax

<control_kind> unsafe_elaboration;

5.62.2 Action

The rule controls library packages (or generic packages) whose elaboration calls or instan-
tiates elements from other units (except language defined units) that are not subject to a
pragma Elaborate or Elaborate_All. The elaboration of such packages may depend on
elaboration order.

Since this rule has no parameters, it can be given only once.

Ex:

check unsafe_elaboration;

5.62.3 Tips

If the package contains tasks, they are considered as being part of the elaboration code
of the package, since tasks could be started by the elaboration of the package. This is
somehow pessimistic in the unlikely case where a package would contain a local task type
(whose specification is not part of the package specification) and no task object of that
type is declared. Anyway, this could create only false positives, therefore there is no risk
associated to it.

Chapter 5: Rules reference 132

5.63 Unsafe Paired Calls

This rule controls usage of calls to operations that are normally paired (like P/V operations)
and do not follow a "safe" coding pattern.

5.63.1 Syntax

<control_kind> unsafe_paired_calls

(<opening procedure>, <closing procedure> [, <lock type>]);

<opening procedure> ::= <entity>

<closing procedure> ::= <entity>

<lock type> ::= <entity>

5.63.2 Action

The following explanations are given in terms of “locks” since this is the primary use of this
rule, however the rule can be used for any calls that need to be properly paired.

The rule can deal with three different kinds of locks:

• abstract state machines: There is no “lock” object, locking is done directly inside the
procedures. The <lock type> parameter of the rule must not be provided in that case.

• object abstract data types: The procedure operates on an object (generally of a private
type) representing the “lock” object, passed as an “in out” parameter. The third
parameter must be the corresponding type, and the rule will control that all matching
pairs of calls refer statically to the same variable.

• reference abstract data types: The procedure operates on a reference that designates
the “lock” object, passed as an “in”parameter. The third parameter must be the
corresponding type, which must be discrete or access, and the rule will control that all
matching pairs of calls refer statically to the same value (for discrete types) or to the
same constant (for access types).

As usual, the whole syntax for entities is allowed for <entity>. See Appendix A [Speci-
fying an Ada entity name], page 145.

The "safe" coding pattern is defined as follows:

• A call to the first procedure is the first statement of a handled sequence of statements;

• A call to the second procedure is the last statement of the same handled sequence of
statements;

• Corresponding calls of a pair use the appropriate value for the “lock” parameter (if
any), as explained above.

• There is no other call to either operation in the statements of the handled sequence of
statements, except in nested blocks or accept statements; calls in such inner statements
shall not reference the same values or variables as outer ones.

• There is an exception handler for "others" in the handled sequence of statements.

• Every exception handler of the handled sequence of statements includes a single call to
the second operation, using the appropriate value or variable for the lock parameter.

Typically, the “safe” pattern corresponds to the following structures:

-- Abstract state machine

begin

Chapter 5: Rules reference 133

P;

-- Do something

V;

exception
when others =>

V;

-- handle exception

end;

-- Object abstract data type

declare
My_Lock : Lock_Type;

begin
P (My_Lock);

-- Do something

V (My_Lock);

exception
when others =>

V (My_Lock);

-- handle exception

end;

-- Reference abstract data type

declare
Lock_Ptr : constant Lock_Access := Get_Lock;

begin
P (Lock_Ptr);

-- Do something

V (Lock_Ptr);

exception
when others =>

V (Lock_Ptr);

-- handle exception

end;

Ex:

check unsafe_paired_calls (Semaphore.P, Semaphore.V, Semaphore.Lock_Access);

5.63.3 Tips

If the <Lock type> parameter is provided, both procedures must have a single parameter of
the given type, it must not correspond to an “out” parameter, and if it corresponds to an
“in” parameter, the type must be discrete or access.

This rule can be specified several times, and it is possible to have the same procedure
belonging to several rules. For example, if you have a Mask_Interrupt procedure that
should be matched by either Unmask_Interrupt or General_Reset (all declared in package
IT_Driver), you can specify:

check unsafe_paired_calls (IT_Driver.Mask_Interrupt,

Chapter 5: Rules reference 134

IT_Driver.Unmask_Interrupt);

check unsafe_paired_calls (IT_Driver.Mask_Interrupt,

IT_Driver.General_Reset);

Normally, the legality of a rule is checked when the rules file is parsed, and execution
does not start if there is any error. However, the legality of the provided type can be checked
only during the analysis. If the type is incorrect for some reason, a proper error message is
issued and execution stops immediately.

5.63.4 Limitation

Due to a weakness of the ASIS standard, dispatching calls are not considered. Especially,
this means that the <Lock type> cannot be class-wide. Such calls are detected by the rule
“uncheckable”. See Section 5.58 [Uncheckable], page 126.

Due to a size limitation of internal data structures, this rule can be specified at most 32
times.

5.64 Unsafe Unchecked Conversion

This rule controls unchecked conversions between types which are not statically known to

have identical sizes.

5.64.1 Syntax

<control_kind> unsafe_unchecked_conversion

5.64.2 Action

This rule controls instances of Unchecked_Conversion between types where the following
conditions are not met:

• A size clause has been specified for both types

• Both sizes are equal

Moreover, a special message is given if any of the types is a class-wide type (certainly a
very questionable construct!).

Ex:

check unsafe_unchecked_conversion

5.64.3 Limitation

There are cases where a size clause is given for a type, but AdaControl is unable to evaluate
it. This happens especially if the size clause refers to a size attribute of a predefined type,
like:

for T’Size use Integer’size;

This can lead to false positives (i.e. detection of instantiations of Unchecked_Conversion
that are actually OK. Such cases are detected by the rule “uncheckable”. See Section 5.58
[Uncheckable], page 126.

Chapter 5: Rules reference 135

5.65 Usage

This rule controls how certain entitities (variables, constants, types, procedures, functions,

exceptions, tasks, protected objects, and generics) are used.

5.65.1 Syntax

<control_kind> usage

(variable|object {,[not] <location> | read | written | initialized});

<control_kind> usage

(constant {,[not] <location> | read});

<control_kind> usage

(type {,[not] <location> | used});

<control_kind> usage

(procedure {,[not] <location> | called | accessed});

<control_kind> usage

(function {,[not] <location> | called | accessed});

<control_kind> usage

(exception {,[not] <location> | raised | handled});

<control_kind> usage

(task {,[not] <location> | called | aborted});

<control_kind> usage

(protected {,[not] <location> | called});

<control_kind> usage

(generic {,[not] <location> | instantiated});

<control_kind> usage

(all {,[not] <location>});

<location> ::= from_visible | from_private | from_spec

5.65.2 Action

The first parameter defines the class of entities to be controlled. “object” stands for both
“constant” and “variable”, “type” stands for both types and subtypes, and “all” stands for
all classes.

If only one parameter is given, usage of all entities belonging to the indicated class are
reported . Otherwise, other parameter(s) are keyword that restrict the kind of usage being
controlled.

“[not] from visible”, “[not] from private”, and “[not] from spec” restrict entities being
checked to those that appear (or not) in (generic) package specifications, in the visible part,
in the private part, or in any part, respectively. “accessed” (available for subprograms
only) restricts entities being checked to those that appear as the prefix of a ’Access or
’Address attribute. Other keywords carry their obvious meaning, and are allowed only
where appropriate. The rule will output the information only for objects that match all the
conditions given. A combination of parameters can be given only once for each of “check”,
“search”, and “count”.

The report includes the kind of unit that declares the entity (normal unit, instantiation,
or generic unit), the part where it is declared (visible or private) if it is declared in a (generic)

Chapter 5: Rules reference 136

package, and whether the entity is known to be initialized, read, written, raised, handled,
called, or aborted, depending on the entity’s class. Some combinations give an extra useful
message (for example, a variable which is initialized and read but not written will produce
a “could be declared constant” message).

Variables of an access type and variables of an array type whose components are of an
access type (or arrays of an access type, etc.) are always considered initialized, since they
are initialized to null by the compiler.

Variables that cannot be assigned to (i.e. variables of an array type with some null
dimension, or variables of a discrete type whose range includes no values) are specially
recognized as “pseudo-constants”: there is no message that they are not written to (since
it is not possible), but there is an indication that they are pseudo-constants.

The subrules “procedure” and “function” check only regular subprograms, not protected
ones. On the other hand, the subrule “protected” controls all calls to any protected sub-
program or entry.

Exceptions raised by calling Raise_Exception and tasks aborted by calling Abort_Task

are properly recognized as exceptions being raised and tasks being aborted, respectively.

In the case of entities declared in generic packages, the rule will report on usage of the
entities for each instantiation, as well as on global usage for the generic itself. Usage for an
instantiation will include usage in the generic itself (i.e. if the generic writes to a variable,
the variable will be marked as “written” for each instantiation). Usage for the generic
itself is the union of all usages in all instantiations (i.e., if a variable from any instantiation
is written to, the variable from the generic will be marked as written). Therefore, if the
rule reports that a variable in a generic package can be declared constant, it means that
no instance of this variable from any instantiation is being written to. But bear in mind
that this can be trusted only if all units from the program are analyzed. See [limitation],
page 137.

Note that usage of entities whose declaration is not processed (like, typically, elements
declared in standard packages like Ada.Text_IO), is not reported. For the same reason, it
is not possible to control usage of predefined operators (since they have no declaration).

Ex:

-- No variable in package spec; check usage otherwise

Package_Variable: check usage (variable, from_spec);

Constantable : search usage (variable, not from_spec, read,

initialized, not written);

Uninitialized : check usage (variable, not from_spec, read,

not initialized, not written);

Removable : search usage (object, not from_spec, not read);

-- Check exceptions that are never raised

-- generics that are never instantiated

-- and protected objects that are never called

check usage (exception, not raised);

check usage (generic, not instantiated);

check usage (protected, not called);

Chapter 5: Rules reference 137

-- Find how many tasks are declared, and report those

-- that may be aborted

count usage (task);

check usage (task, aborted);

5.65.3 Tips

Constants that are never used, exceptions that are never raised or handled, tasks that are
never called, etc. are suspicious. Moreover, some useful compiler warnings (like those about
variables that should be declared constants) are not output for variables declared in library
packages, and even in some other contexts (at least with GNAT). This rule can check these
kind of things, project wide.

Some of these checks make sense only for entities declared in package specifications; for
example, variables are often discouraged in package specifications, or need at least some
extra control. That’s why it can be useful to restrict some checks to package specifications.

Note that an unspecified parameter in a rule stands for two rules (positive and negative
form of the missing parameter). I.e.:

search usage (variable, from_spec, read, written);

is the same as:

search usage (variable, from_spec, read, written, initialized);

search usage (variable, from_spec, read, written, not initialized);

Therefore, the following example will complain on the second line that the rule has
already been given for this combination of parameters:

search usage (variable, from_spec, read, written);

search usage (variable, from_spec, read, written, not initialized);

Note that the notion of constants for this rule includes named numbers.

5.65.4 Limitations

The report of this rule is output at the end of the run, and is meaningful only for the units
that have been processed; i.e., if it reports “variable not read”, it should be understood as
“not read by the units given”. In order to have meaningful results, it is therefore advisable
to use this rule on the complete closure of the program.

An exception can be raised by passing its ’Identity to a procedure that will in turn
call Raise_Exception (and similarly for Abort_Task). These cases are not statically deter-
minable, and therefore not recognized by AdaControl. However, these cases can be identified
by searching the use of the ’Identity attribute with the following rule:

check entity (all ’Identity);

If an object is the prefix of a ’Access, ’Unchecked_Access, or ’Address attribute, it
can be used through the access (or address) value in ways that are not statically analyzable.
The same happens if objects are targets of dynamic renamings. Such cases are detected by
the rule “uncheckable”. See Section 5.58 [Uncheckable], page 126.

Due to a weakness of the ASIS standard, it is not possible to know the mode (in, out)
of variables used as parameters of dispatching calls. Such variables are considered to be
read and written at the point of the call, therefore possibly creating false positives (which
is safer than false negatives). Use of such constructs is detected by the rule “uncheckable”.
See Section 5.58 [Uncheckable], page 126.

Chapter 5: Rules reference 138

5.66 Use Clauses

This rule controls usage of use clauses.

5.66.1 Syntax

<control_kind> use_clauses

[([<subrule>,] <package name> {, <package name>})];

<subrule> ::= package | local | global | type | type_local | type_global

5.66.2 Action

The rule controls every use or use type clause, except those that name one of the mentioned
packages/types. It is therefore possible to allow use or use type clauses just for certain
packages/types.

If the keyword “package” is given (or no keyword at all), all package use clauses are
controlled. If the keyword “global” is given, only use clauses that appear in context clauses
(i.e. together with the with clauses) are controlled; if the keyword “local” is given, only use
clauses that appear as declarations are controlled.

If the keyword “type” is given, all use type clauses are controlled. If the keyword
“type global” is given, only use type clauses that appear in context clauses (i.e. together
with the with clauses) are controlled; if the keyword “type local” is given, only use type
clauses that appear as declarations are controlled.

This rule can be given at most once for each of check, search and count. This way, it is
possible to have a level considered a warning (search), and one considered an error (check).

Ex:

-- Global use clauses are disallowed, local ones only for IO:

check use_clauses (global);

check use_clauses (local, Ada.Text_IO, Ada.Wide_Text_IO);

-- No use type in context clauses, count types that are "use type"’d

check (type_global);

count (type);

5.67 With Clauses

This rule controls with clauses that should be removed or moved to a better place.

5.67.1 Syntax

<control_kind> with_clauses [(<subrule> [, <subrule>])];

<subrule> ::= multiple_names | reduceable | inherited

5.67.2 Action

The parameters are subrule keywords that determine which kind of control is performed:

• multiple_names controls any with clause that mentions more than one unit name.

• reduceable reports:

• Redundant with clauses, i.e. clauses given more than once for the same unit. This
includes the case where the same with clause is given in a specification and the

Chapter 5: Rules reference 139

corresponding body, and the case of renamings of a same unit (i.e. Text_IO and
Ada.Text_IO). Note that giving a with clause in a unit, and repeating it in a child
unit (or subunit) is not considered redundant.

• Unused with clauses, i.e. when nothing from the withed unit is referenced in the
corresponding unit. Use of a package name in a use clause is not considered a
usage of the package. The rule signals when a withed unit is not used in a unit,
but used in one or more of its subunits. If an unused with clause is given on a
package specification, the message reminds that it migh be useful for child units.

• Moveable with clauses, i.e. when the withed unit is not used in the specification,
but only in the body, and should be moved to the body, or when the withed unit
is only used in the private part, and could be replaced by a private with.

• inherited controls child units and subunits that reference a unit which is not directly
withed, i.e. when withed only from a parent (or enclosing) unit. Although Ada rules
imply that a with clause carries on to child units and subunits, it can be considered
better practice to ensure that every compilation unit withes directly the units it needs.

Each of the keywords can be given at most once. If no keyword is given, both reduceable

and inherited are assumed.

Ex:

check with_clauses (multiple_names, reduceable);

search with_clauses (inherited);

5.67.3 Variables

Variable Values Default Effect
Check Private Withoff/on on if you are working in pure Ada 95, you may

not want messages that a with can be replaced
with a private with. Setting this variable to off
disables these messages.

5.67.4 Tips

A with clause can safely be removed if it is unused, and no child unit (or subunit) reports
that the unit is inherited.

Chapter 6: Examples of using AdaControl for common programming rules 140

6 Examples of using AdaControl for common
programming rules

In most projects, there are programming rules that define the way a program should be
written. AdaControl performs controls, i.e. it finds occurrences of certain kinds of con-
structs. In this chapter, we give examples of commonly found programming rules, and how
the corresponding controls can be written.

6.1 Migrating from Gnatcheck

The file gnatcheck.aru in directory rules gives the AdaControl equivalents of rules checked
by Gnatcheck. This version of AdaControl covers most of Gnatcheck rules. For rules where
Gnatcheck requires a parameter, the AdaControl rule is given for the default value, or with
an example value. Small differences in semantics are indicated by a comment that starts
with "Difference:".

This file is not intended to be used directly, but as an example on how to convert
Gnatcheck rules into AdaControl rules. Note that in many cases, AdaControl is much more
general than Gnatcheck. The file follows as strictly as possible the rules as defined by
Gnatcheck, but if you are migrating from Gnatcheck to AdaControl, you may want to use
the more powerful forms provided by AdaControl.

6.2 Rules files provided with AdaControl

The rules directory provides also rules files that can be sourced to enforce some commonly
encountered general rules.

Identifiers from Standard shall not be redefined

Use file no_standard_entity.aru.

Identifiers from System shall not be redefined

Use file no_system_entity.aru.

Predefined IO packages shall not be used

Use file no_io.aru.

Standard package XXX shall not be used

File no_standard_unit.aru controls usage of all standard packages. Comment out
those that you do want to allow.

Obsolescent features shall not be used

Use file no_obsolescent_features.aru. Not all obsolescent features are controlled, but
most of them (those that are most worth checking) are.

Gnat specific attributes shall not be used

Use file no_gnat_attribute.aru

Chapter 6: Examples of using AdaControl for common programming rules 141

Features from annex X shall not be used

Use file no_annex_X.aru.

The Ravenscar profile shall be enforced

Use file ravenscar.aru.

Note that not all of the restrictions of the Ravenscar profile are currently controlled, but
many are, and we expect later releases of AdaControl to increase the number of controlled
features. In some cases (like “Detect Blocking”), AdaControl does a better job than the
profile, since it can detect statically situations that the profile only requires to be detected
at run-time. The rule file is also slightly more restrictive than the profile; for example, the
restriction “no task allocation” only disallows task allocators, while this rule file controls
the declaration of access types on tasks.

NASA coding guidelines shall be enforced

Use file nasa.aru. This file is an example of how to convert guidelines (available from
http://fsw.gsfc.nasa.gov/gds/code_standards_ada.pdf) into an AdaControl rules
file.

Ada 83 unit names shall not be used (i.e. use Ada.Text_IO, not Text_IO)

Use file no_83_unit_name.aru.

New reserved words of Ada 2005/2012 shall not be used

Use file reserved_2005.aru. (the file name mentions only 2005, but it checks also for
2012 - after all, there is only one extra reserved word).

Measurements for the SQALE method

AdaControl can provide measurements required by the SQALE quality measurement
method. The corresponding file is SQALE.aru.

For information about the SQALE method, please refer to J-P Rosen’s paper at http://
www.adalog.fr/publicat/sqale.pdf

6.3 Automatically checkable rules

Below are examples of rules that can be directly checked by AdaControl.

Goto statement shall not be used

check statements (goto);

Functions shall not have out or in out parameters (Ada 2012)

check parameter_declarations (out_parameters, max 0, function);

check parameter_declarations (in_out_parameters, max 0, function);

Short circuit forms should be preferred over corresponding logical operators

http://fsw.gsfc.nasa.gov/gds/code_standards_ada.pdf
http://www.adalog.fr/publicat/sqale.pdf
http://www.adalog.fr/publicat/sqale.pdf

Chapter 6: Examples of using AdaControl for common programming rules 142

Use_Short_Circuit: search expressions (and, or);

Aggregates should be used for full assignments to structured variables, unless it is a record
with a single component

check multiple_assignments (groupable, given 2, ratio 100);

All loops that contain exit statements must be named, and the name must be given in the
exit statement

check statements (unnamed_loop_exited);

check statements (unnamed_exit);

All type names must start with “T ”

check naming_convention (type, "^T_");

All program units must repeat their name after the “end”

check style (no_closing_name);

Pragma Suppress is not allowed

check pragmas (suppress);

Ada tasking must not be used

check declarations (task);

“=” and “/=” shall not be used between real types

check expressions (real_equality);

All tasks must provide an exception handler that calls “Failure” in the case of an unhandled
exception

check exception_propagation (task);

check silent_exceptions (failure);

Unchecked Conversion shall not be used

check entities (ada.unchecked_conversion);

No global variable shall be declared in the visible part of a package specification

check usage (variable, from_spec);

Predefined numeric types of the language shall not be used

check entities (standard.Integer,

standard.short_integer,

standard.long_integer,

standard.Float,

Chapter 6: Examples of using AdaControl for common programming rules 143

standard.short_float,

standard.long_float);

Access to subprograms shall not be used

check declarations (access_to_sp);

Abort statements shall not be used

check statements (abort);

There shall be only one instantiation of Ada.Numerics.Generic Elementary Functions for
each floating point type

-- Put a --##RULE LINE OFF GEF

-- for the one which is allowed

GEF: check Instantiations (Ada.Numerics.Generic_Elementary_Functions);

A local item shall not hide an outer one with the same name

check Local_Hiding;

There shall be no IOs in exception handlers

check entity_inside_exception (ada.Text_IO.put, ada.Text_IO.put_line,

ada.Text_IO.get, ada.Text_IO.get_line);

Note that this checks for all overloaded procedures, but only those dealing with characters
and strings (those defined directly within Ada.Text IO). If the names “get” and “put” are
not used for anything else than IOs, a more general form can be given as:

check entity_inside_exception (all get, all put,

all get_line, all put_line);

This will check that no entity with the corresponding names appear in exception handlers.

Exceptions shall not be used

No_Exception: check declarations (exception, handlers);

No_Exception: check statements (raise);

No_Exception: check entities (Ada.Exceptions);

This will check that no exception is declared, no exception handler is provided, and no
exception is raised, not even through the services of the package Ada.Exceptions.

No procedure exported to C shall propagate exceptions

check exception_propagation (interface, C);

There shall be no Unchecked Conversion to or from Address

check instantiations (ada.unchecked_conversion, system.address);

check instantiations (ada.unchecked_conversion, <>, system.address);

There shall be no use clause except for Text IO

Chapter 6: Examples of using AdaControl for common programming rules 144

check use_clauses(ada.text_IO);

Use explicit list of values in case statements rather than “when others”if the “when others”
would cover less than 10 values

check Case_Statement(min_others_span, 10);

If a block is more than 20 lines long, it must be named

check Max_Size(unnamed_block, 20);

Exceptions shall not be handled except by main program

check declaration (handlers)

This check will be disabled for the exception handler of the main program.

Each unit has a header starting with a fixed format, and must contain at least 10 lines of
comments

check header_comments (model, "header.txt");

check header_comments (minimum, 10);

The file header.txt contains the required header (as regexps), like:

^--*{50}$

^-- This is a header$

6.4 Rules that need manual inspection

Below are examples of rules that require manual inspection, but where AdaControl can be
used to identify suspicious areas.

All usages of the ’ADDRESS attribute shall be justified and documented

search entities (all ’address);

Specifying an address for a variable shall be restricted to hardware interfacing

search representation_clauses(address);

There shall be no memory leakage

search Allocators;

This rule identifies all allocations, and thus can be used to check that all allocated
elements are properly deallocated.

Appendix A: Specifying an Ada entity name 145

Appendix A Specifying an Ada entity name

A.1 General syntax

Many rules can take Ada entities as parameters. Each time a rule uses the category <entity>,
it refers to an Ada entity that can be specified with the following syntax:

<entity> ::= <full_name> | "all" <simple_name> | "all" <attribute>

<full_name> is the full name of the Ada entity, using normal Ada dot notation (with
some extensions, see below). Full name means that you give the full expanded name,
starting from a compilation unit. This name must be the actual full name, i.e. it must not
include any renaming (otherwise the name will not be recognized). For example, the usual
Put_Line must be given as Ada.Text_IO.Put_Line, not as Text_IO.Put_Line. Predefined
elements (Integer, Constraint_Error) must be given in the form Standard.Integer or
Standard.Constraint_Error, since they are logically declared in the package Standard.

<simple_name> is a single identifier, possibly followed by overloading information. No
qualification is allowed.

<Attribute> is an attribute name, including the quote. No overloading information is
allowed.

<full_name> designates a single entity or several overloaded entities declared in the
same place (as identified by the prefix), while all <simple_name> designates all identifiers
with the given name in the program, irrespectively of where they appear. all <Attribute>

designates all occurrences of the given attribute, irrespectively of what the attribute applies
to.

A utility is provided with AdaControl to help you find the full name of an entity. See
Section 3.8.1 [pfni], page 22. If you are using GPS with AdaControl plug-ins, it can be
accessed directly from the contextual menu. See Section 3.6.2 [Contextual menu], page 19.

A.2 Overloaded names

In Ada, names can be overloaded. This means that you can have several procedures P in
package Pack, if they differ by the types of the parameters. If you just give the name
Pack.P as the <entity>, the corresponding rule will be applied to all elements named P

from package Pack. If you want to distinguish between overloaded names, you can specify
a profile after the element’s name. A profile has the syntax:

"{" [["access"] <type-name>

{ ";" ["access"] <type-name> }]

["return" <type-name>] "}"

You must specify the type name, even if the <entity> declaration uses a subtype of the
type; this is because Ada uses types for overloading resolution, not subtypes. Anonymous
access parameters are specified by putting access in front of the type name. An overloaded
name for a procedure without parameters uses just a pair of empty brackets. If the sub-
program is a function, you must provide the return <type-name> part for the return type
of the function. The types must also be given as a unique name, i.e. including the full
path: if the type is T declared in package Pack, you must specify it as Pack.T. As a conve-
nience, the Standard. is optional for predefined types, so you can write Standard.Integer

Appendix A: Specifying an Ada entity name 146

as Integer. There is no ambiguity, since a type is always declared within some construct.
Note that omitting Standard works only for types that are part of the profile used to distin-
guish between overloaded Ada entities but that the Ada entity name must always contain
Standard if it is a predefined element.

Overloaded names can be also be used with the all <simple_name> form of the <entity>.
In this case, the rule will be applied to all names that are subprograms with the given
identifier and matching the given profile, irrespectively of where they appear.

Note that if you use an overloaded name, all overloadable names that are part of the
<entity>, including those of the profile, must use the overloaded syntax. For example, given
the following program

procedure P is
procedure Q (I : Integer) is

...

end Q;

procedure Q (F : Float) is
...

end Q;

begin
...

end P;

If you want to distinguish between the two procedures Q, you must specify them as
P{}.Q{Integer} and P{}.Q{Float} (note the P{} which specifies an overloaded name for
a procedure P without parameters).

The names of entities which can not be overloaded (like package, exception, . . .) must
not be suffixed by braces (e.g. Ada.Text_IO.Put_Line{Standard.String}).

A.3 Enumeration literals

Following normal Ada rules, an enumeration literal is considered a parameterless function.
If you want to distinguish between overloaded enumeration literals, you can use overloaded
names for them. For example, given:

package Pack is
type T1 is (A, B);

type T2 is (B, C);

end Pack;

Ada entities names are:

• Pack.B{return Pack.T1}

• Pack.B{return Pack.T2}

A.4 Operators

AdaControl handles operators (i.e. functions like "+") correctly. Of course, you must specify
such operations using normal Ada syntax: if you define the integer type T in package Pack,
an overloaded name for the addition would be Pack."+"{Pack.T; Pack.T return Pack.T}.

Appendix A: Specifying an Ada entity name 147

A.5 Attributes

It is also possible to designate attributes of entities, using the normal notation (i.e.
Standard.Integer’First). If the name of an attribute which is a function appears in a
name that uses the overloaded syntax, it is not necessary (and actually not allowed) to
provide its profile, since there is no possible ambiguity in that case. For example, given:

procedure P (I : Integer) is
type T is range 1 .. 10;

begin
...

end P;

You can designate the ’Image attribute for type T as P{Standard.Integer}.T’Image
(the profile of the ’Image function is not given, as would be necessary for a normal function).

To designate all occurrences of an attribute, use all in front of the attribute. To designate
only occurrences of an attribute whose prefix is a (sub) type (but any type or subtype),
give it as type’Attr (i.e. the keyword “type” is put in front of the quote).

all may be used in place of an attribute name to mean “any attribute”. See examples
below.

check entities (all ’Image); -- Find all occurrences of ’Image

check entities (all type’Length); -- Find all occurrences of ’Length

-- applied to a type

check entities (Standard.Integer’all); -- Find all attributes applied

-- to type Integer

Check entities (all type’all); -- Find all attributes applied

-- to a type

check entities (all ’all); -- Find all attributes

A.6 Anonymous constructs and extended return statements

There is a special case for elements that are defined (directly or indirectly) within unnamed
loops or block statements. Everything happens as if the unnamed construct was named
anonymous. Therefore if you have the following program:

procedure P is
begin

for I in 1..10 loop
declare

J : Integer;

begin
...

end;
end loop;

end P;

You can refer to I as P._anonymous_.I, and to J as P._anonymous_._anonymous_.J.

Similarly, an extended return statement is considered “named” return. Therefore if you
have the following program:

Appendix A: Specifying an Ada entity name 148

function F return Integer is
I : Integer;

begin
return I : Integer do

...

end return;
end F;

You can refer to the I declared in F as F.I, and to the return object I as F.return.I.

A.7 Record and protected types components

You can designate the name of a record or protected type component (a “field” name), but
to identify it uniquely, you must precede its name by the name of the type. This is a small
extension to Ada syntax, but it is the simplest and most natural way to deal with this case.
For example, given:

procedure P is
type T is

record
Name : Integer;

end record;
...

The Ada entity name is P.T.Name.

A.8 Formals of access to subprogram types

Similarly, you can designate the formal of an access to subprogram type by prefixing it by
the access type. For example, given:

procedure P is
type T is access procedure (X : Integer);

...

The Ada entity name of the formal is P.T.X.

A.9 Limitation

Due to a limitation of ASIS for GNAT, it is not possible to specify a profile with predefined
operators; predefined operators without a profile work normally.

-- This will not recognize "<" on Standard.Integer:

check entities (Standard."<"{Standard.Integer,

Standard.Integer

return Standard.Boolean});

-- This will correctly recognize all predefined "<":

check entities (Standard."<");

Appendix B: Syntax of regular expressions 149

Appendix B Syntax of regular expressions

The following syntax gives the complete definition of regular expressions, as used by several
rules. It is taken from the specification of the package gnat.regpat, where additional
information is available.

regexp ::= expr

::= ^ expr -- anchor at the beginning of string

::= expr $ -- anchor at the end of string

expr ::= term

::= term | term -- alternation (term or term ...)

term ::= item

::= item item ... -- concatenation (item then item)

item ::= elmt -- match elmt

::= elmt * -- zero or more elmt’s

::= elmt + -- one or more elmt’s

::= elmt ? -- matches elmt or nothing

::= elmt *? -- zero or more times, minimum number

::= elmt +? -- one or more times, minimum number

::= elmt ?? -- zero or one time, minimum number

::= elmt { num } -- matches elmt exactly num times

::= elmt { num , } -- matches elmt at least num times

::= elmt { num , num2 } -- matches between num and num2 times

::= elmt { num }? -- matches elmt exactly num times

::= elmt { num , }? -- matches elmt at least num times

non-greedy version

::= elmt { num , num2 }? -- matches between num and num2 times

non-greedy version

elmt ::= nchr -- matches given character

::= [range range ...] -- matches any character listed

::= [^ range range ...] -- matches any character not listed

::= . -- matches any single character

-- except newlines

::= (expr) -- parens used for grouping

::= \ num -- reference to num-th parenthesis

range ::= char - char -- matches chars in given range

::= nchr

::= [: posix :] -- any character in the POSIX range

::= [:^ posix :] -- not in the POSIX range

posix ::= alnum -- alphanumeric characters

::= alpha -- alphabetic characters

::= ascii -- ascii characters (0 .. 127)

Appendix B: Syntax of regular expressions 150

::= cntrl -- control chars (0..31, 127..159)

::= digit -- digits (’0’ .. ’9’)

::= graph -- graphic chars (32..126, 160..255)

::= lower -- lower case characters

::= print -- printable characters (32..127)

::= punct -- printable, except alphanumeric

::= space -- space characters

::= upper -- upper case characters

::= word -- alphanumeric characters

::= xdigit -- hexadecimal chars (0..9, a..f)

char ::= any character, including special characters

ASCII.NUL is not supported.

nchr ::= any character except \()[].*+?^ or \char to match char

\n means a newline (ASCII.LF)

\t means a tab (ASCII.HT)

\r means a return (ASCII.CR)

\b matches the empty string at the beginning or end of a

word. A word is defined as a set of alphanumerical

characters (see \w below).

\B matches the empty string only when *not* at the

beginning or end of a word.

\d matches any digit character ([0-9])

\D matches any non digit character ([^0-9])

\s matches any white space character. This is equivalent

to [\t\n\r\f\v] (tab, form-feed, vertical-tab,...

\S matches any non-white space character.

\w matches any alphanumeric character or underscore.

This include accented letters, as defined in the

package Ada.Characters.Handling.

\W matches any non-alphanumeric character.

\A match the empty string only at the beginning of the

string, whatever flags are used for Compile (the

behavior of ^ can change, see Regexp_Flags below).

\G match the empty string only at the end of the

string, whatever flags are used for Compile (the

behavior of $ can change, see Regexp_Flags below).

... ::= is used to indication repetition (one or more terms)

Embedded newlines are not matched by the ^ operator. It is possible to retrieve the
substring matched a parenthesis expression. Although the depth of parenthesis is not limited
in the regexp, only the first 9 substrings can be retrieved.

The operators ’*’, ’+’, ’?’ and ’{}’ always match the longest possible substring. They all
have a non-greedy version (with an extra ? after the operator), which matches the shortest
possible substring.

For instance:

Appendix B: Syntax of regular expressions 151

regexp="<.*>" string="<h1>title</h1>" matches="<h1>title</h1>"

regexp="<.*?>" string="<h1>title</h1>" matches="<h1>"

’{’ and ’}’ are only considered as special characters if they appear in a substring that
looks exactly like ’{n}’, ’{n,m}’ or ’{n,}’, where n and m are digits. No space is allowed.
In other contexts, the curly braces will simply be treated as normal characters.

Note that if you compiled AdaControl with the String_Matching_Portable package,
only basic wildcards are available, i.e. only “*” and “?” are supported, where “*” matches
any string of character and “?” matches a single character.

Appendix C: Non upward-compatible changes 152

Appendix C Non upward-compatible changes

This chapter is intended to users of a previous version of AdaControl, who want to mi-
grate rule files to the latest version. Although we understand the burden of non upward-
compatible changes, we consider that making AdaControl more powerful and easier to use
is sometimes more important than strict compatibility. Moreover, in most cases the changes
are very straightforward and can be done easily by hand, or with scripts if many files are
involved.

C.1 Migrating from 1.15r5

C.1.1 Array Declarations

The extension of aspects to more rules required a slight change in the syntax of the “compo-
nent” subrule: the keywords “packed”, “sized”, and “component sized” have been changed
to “pack”, “size”, and “component size”, respectively.

C.1.2 Multiple Assignments

Due to new functionalities, and expecting more in the future, the rule has been renamed to
“Assignments”.

C.1.3 No Operator Usage

The syntax has been changed, due to the introduction of “indexing”. Moreover, the rule
was not consistent, in that the result of “none” was affected by the presence or absence of
“logical” (without “logical”, “none” included all types, while with it, it counted only those
not counted with “logical”). If you want that exact same behaviour (which might not be
desirable), change:

-- (1)

check no_operator_usage (none);

-- (2)

check no_operator_usage (logical);

-- (3)

check no_operator_usage (none, logical)

-- or no parameters

to:

-- (1)

check no_operator_usage(ignore indexing, ignore logical);

-- or no parameters

-- (2)

check no_operator_usage (logical);

-- (3)

check no_operator_usage (not logical),

check no_operator_usage (logical);

Appendix C: Non upward-compatible changes 153

C.1.4 Object Declarations

Due to the necessity of avoiding a syntactic ambiguity in the new subrule “type”, the key-
word “all” is no more allowed in the syntax for the subrule “min integer span” (specifying
neither “variable” or “constant” still means the subrule applies to both, as before). Change:

count object_declarations (min_integer_span, all 8);

to:

count object_declarations (min_integer_span, 8);

C.1.5 Statements

The subrule “exit” was documented as controlling all exit statements, but it did not report
exits from for and while loops if “exit for loop” (respectively “exit while loop”) was also
specified. It now behaves as documented, i.e. it controls all exit statements.

Note that if you want separate messages for each kind of loop, the new rule
“exit plain loop” controls exit from plain loops.

C.1.6 Style

The subrule “positional association” is now a rule of its own, “positional associations”. The
order of parameters is different, due to various subrules of the new rule. Typically, change:

check style (parameter_association, call, 1);

to:

check parameter_associations (all, 1, call);

Note that the new rule distinguishes between regular array aggregates and aggregates
used for enumeration representation clauses.

Modes of the subrules “parameter order” and “formal parameter order” are now sepa-
rated by “|”. With the previous syntax, forgetting a comma was changing the meaning of
the rule without introducing a syntax error. Typically, change:

check style (parameter_order, in defaulted_in, out in_out);

to:

check style (parameter_order, in | defaulted_in, out | in_out);

C.2 Migrating from 1.14r9

C.2.1 Local Hiding

Due to the introduction of extra parameters for allowed patterns, it is no more possible to
specify the rule several times in the same command. Change:

check local_hiding (strict, overloading);

to:

check local_hiding (strict);

check local_hiding (overloading);

The special subrule “overloading short” has been replaced by a rule variable to choose
the report format. Change:

Appendix C: Non upward-compatible changes 154

check local_hiding (overloading_short);

to:

set local_hiding.overloading_report compact;

check local_hiding (overloading);

C.2.2 Max Nesting

The value given is now the nesting level (consistent with the rule name), no more the
maximum depth. This is more natural (Max Nesting(1) means that the construct can be
nested once), but it is one less than in previous versions. For example, change:

check Max_Nesting (5);

to:

check Max_Nesting (4);

C.2.3 Parameter Declarations

The subrules have been generalized, using the same syntax for bounds as other rules.
Change:

check parameter_declarations (min_parameters, 1);

check parameter_declarations (max_parameters, 5);

check parameter_declarations (max_defaulted_parameters, 3);

to:

check parameter_declarations (all_parameters, min 1, max 5);

check parameter_declarations (defaulted_parameters, max 3);

C.3 Migrating from 1.11r4

C.3.1 Expressions

The subrule Real_Equality does not control user-defined equality operators any more.
This is intended to be more of an improvement than an incompatibily.

C.3.2 Special Comments

Since the number of subrules is growing, and do not only address ‘special” comments, this
rule has been renamed to “comments”.

C.4 Migrating from 1.10r10

C.4.1 GPS integration

Due to a bug/feature of the GPS interface, if a units file was specified, it did not reappear
later in the corresponding box of the Switch/AdaControl dialog. This has been fixed, but
you must reenter the units file name in the dialog.

C.4.2 Representation Clauses

The introduction of categories made some subrules syntactically ambiguous or
redundant. In consequence, the subrules “derived record”, “extension record”, and

Appendix C: Non upward-compatible changes 155

“tagged record” have been removed, and the subrules “record”, “incomplete record”,
and “non contiguous record” have been renamed as “layout”, “incomplete layout”, and
“non contiguous layout” respectively. Change:

check representation_clause (derived_record);

check representation_clause (extension_record);

check representation_clause (tagged_record);

check representation_clause (record);

check representation_clause (incomplete_record);

check representation_clause (non_contiguous_record);

to:

check representation_clause (new layout);

check representation_clause (extension layout);

check representation_clause (tagged layout);

check representation_clause (layout);

check representation_clause (incomplete_layout);

check representation_clause (non_contiguous_layout);

C.5 Migrating from 1.9r4

C.5.1 Array Declarations

The subrule “Max Length” has been changed to “Length”, with the possibility to specify
both min and max values. Change:

check array_declarations (max_length, 100);

to:

check array_declarations (length, max 100);

C.5.2 Declarations

The subrule names “initialized record field”, “uninitialized record field”, “ini-
tialized protected field”, and “uninitialized protected field” have been changed
to “initialized record component”, “uninitialized record component”, “initial-
ized protected component”, and “uninitialized protected component”, respectively, to be
more consistent with official Ada terminology. Change:

check declarations (initialized_record_field,

uninitialized_record_field,

initialized_protected_field,

uninitialized_protected_field);

to:

check declarations (initialized_record_component,

uninitialized_record_component,

initialized_protected_component,

uninitialized_protected_component);

The subrule “aliased” has been split into “aliased constant” and “aliased variable”. The
old rule controlled both at the same time, but did not control aliased components (there
are now other subrules to that effect). Change:

Appendix C: Non upward-compatible changes 156

check declarations (aliased);

to:

check declarations (aliased_constant, aliased_variable);

C.5.3 Default Parameter

The <place> is no more allowed to be “all”, because it was ambiguous with the “all <name>”
syntax of <entity>. If you used “all”, duplicate the control with “calls” and “instantiations”.
Change:

My_label : check default_parameter (all, ...);

to:

My_label : check default_parameter (calls, ...),

check default_parameter (instantiations, ...);

C.5.4 Improper Initialization

By default, variables declared directly within (generic) package specifications and bodies
are no more checked. To get the previous behaviour, add the “package” modifier. Change:

check improper_initialization (variable);

to:

check improper_initialization (package variable);

C.6 Migrating from 1.8r8

C.6.1 CSV(X) format

If the output format is CSV or CSVX, the file name, line number and column number are
generated as three different spreadsheet columns, instead of forming a single message. This
makes it easier to use a spreadsheet program for per-file statistics.

C.6.2 Default Parameter

Due to the introduction of the “positional” keyword, “not used” is now spelled “not used”.
Change:

check default_parameter (proc, param, not used);

to:

check default_parameter (proc, param, not_used);

C.6.3 Other Dependencies

This rule has been changed into a subrule of the (new) rule “Dependencies”. Change:

check Other_Dependencies (pack1, pack2);

to:

check Dependencies (others, pack1, pack2);

Appendix C: Non upward-compatible changes 157

C.6.4 Special Comments

Due to the introduction of another subrule, add “pattern” as the first parameter to the
rule. Change:

check Special_Comments ("TBSL");

to:

check Special_Comments (pattern, "TBSL");

C.6.5 Statements

The “raise” subrule now reports all occurrences of the raise statement, even if another
control is applicable to the same statement.

The “reraise” subrule now reports calls to Ada.Exceptions.Reraise_Occurrence.

The “raise standard” subrule now reports exceptions raised by calls to
Ada.Exceptions.Raise_Exception.

C.7 Migrating from 1.7r9

C.7.1 Case Statement

This rule now allows the specification of both min and max values for each subrule. Subrule
names have been changed accordingly. Change:

check Case_Statement (max_range_span, 5);

check Case_Statement (max_values, 10);

check Case_Statement (min_others_span, 4);

check Case_Statement (min_paths, 6);

to:

check Case_Statement (range_span, max 5);

check Case_Statement (values, max 10);

check Case_Statement (others_span, min 4);

check Case_Statement (paths, min 6);

C.7.2 Max Parameters

This rule has been changed into a subrule of the (new) rule “Parameter Declarations”.
Change:

check Max_Parameters (10);

to:

check Parameter_Declarations (Max_Parameters, 10);

C.8 Migrating from 1.6r8

C.8.1 “message” command

The message is now syntactically a string, and must always be enclosed in double quotes
(quotes were optional in previous versions).

Appendix C: Non upward-compatible changes 158

C.8.2 “source” command

If a “source” command is given in a rules file, and the sourced file is given with a rela-
tive path, it is interpreted relatively to the sourcing file (it was interpreted relatively to
the current directory previously). This should make “chained” sourcing easier, since the
interpretation does not depend on where the sourcing file is being called from.

C.8.3 Control Characters

This rule is now called “Characters” and can process other kinds of characters in addition
to control characters. Control characters correspond to the “control” parameter of the rule.
Change:

check control_characters;

to:

check characters (control);

C.8.4 If For Case

This rule has been changed into a subrule of the (new) rule “simplifiable statements”.
Change:

check if_for_case;

to:

check simplifiable_statements (if_for_case);

C.8.5 Instantiations

The rule does not print the number of instantiations any more, since the same effect can be
achieved with the “count” control kind.

C.8.6 Local Instantiation

This rule has been removed, since its effect can now be achieved with other rules: the rule
“declarations” to check for local instantiations of any generic, and the rule “instantiations”
to check for local instantiations of specified generics. Change:

R1: check Local_Instantiation;

R2: search Local_Instantiation (Ada.Unchecked_Conversion);

to:

R1: check declarations (local instantiation);

R2: search Instantiations (local Ada.Unchecked_Conversion);

C.8.7 Naming Convention

Quotes are no more optional around patterns.

The <location> modifier is now before the <filter kind> (it was before the pattern previ-
ously). This may require splitting the rule in two in some cases. For example, change:

check naming_convention (object, local "^L_", global "^G_");

to:

check naming_convention (local object, "^L_");

check naming_convention (global object, "^G_");

Appendix C: Non upward-compatible changes 159

C.8.8 No Safe Initialization

The name of this rule has been changed to “improper initialization”, since it now controls
other cases of improper initialization.

C.8.9 Special Comments

Quotes are no more optional around patterns.

C.8.10 Statements

Two subrules of this rule have migrated to the new rule “simplifiable statements” (with
slightly different names). Change:

check statements (unnecessary_null);

check statements (while_true);

to:

check simplifiable_statements (null);

check simplifiable_statements (loop);

C.9 Migrating from 1.5r24

C.9.1 Declarations

The subrule “Formal In Out” has been renamed as “In Out Generic Parameter”, for con-
sistency with the new “In Out Parameter” subrule.

The subrules “renames” and “not operator renames” have been renamed to “renaming”
and “not operator renaming”.

As a consequence of being able to specify the location of any construct, the subrules
“nested function instantiation”, “nested generic function”, “nested generic package”,
“nested generic procedure”, “nested package”, “nested package instantiation”, and
“nested procedure instantiation” have been removed and replaced with the corresponding
general construct (without “nested ”). You can have the same effect by specifying the
“nested” modifier in front of them. I.e., change:

check declarations (nested_generic_function);

to:

check declarations (nested generic_function);

C.9.2 Naming Convention

The <location> keyword is placed before the <Filter Kind> keyword instead of before the
<Pattern>, which looks more natural. The “Any” keyword has been removed, since omitting
the <location> keyword has the same effect. Change:

check naming_convention (variable, global "^G_");

check naming_convention (package, any "^Pack_");

to:

check naming_convention (global variable, "^G_");

check naming_convention (package, "^Pack_");

Appendix C: Non upward-compatible changes 160

C.9.3 Non Static Constraint

This rule is now called Non Static, since it is no more restricted to constraints. The param-
eters “index” and “discriminant” have been changed to “index constraint” and “discrimi-
nant constraint”, respectively. Change:

check non_static_constraint (index, discriminant);

to:

check non_static (index_constraint, discriminant_constraint);

C.9.4 Positional Parameters

This rule has been renamed to Insufficient_Parameters, since it does no more handle
the “maximum” subrule. Controlling positional parameters according to their number is
now done by the rule style (positional_association). Change:

check positional_parameters (maximum, 3);

check positional_parameters (insufficient, 2, Boolean);

to:

check style (positional_association, call, 3);

check insufficient_parameters (2, Boolean);

C.9.5 Real Operator

This rule is no more a rule of its own, it is a subrule of the (new) rule Expressions, whose
name is Real Equality. Change:

check Real_Operators;

to:

check expressions (Real_Equality);

C.9.6 Style

The name of the subrule “casing” has been changed to “casing identifier” since the casing
of attributes and pragmas can now also be checked. The casing style is no more optional.

The name of the subrule “literal” has been changed to “numeric literal” (since characters
and strings are also literals, but are not handled by this subrule).

The subrule “exposed literal” now requires an extra parameter to tell whether it applies
to integer literals, real literals, character literals or string literals. Allowed values are pro-
vided after this parameter, and must of course be of the appropriate type. In short, if you
had:

check style (exposed_literal, 0, 1, 0.0, 1.0);

you must change it to:

check style (exposed_literal, integer, 0, 1)

check style (exposed_literal, real, 0.0, 1.0);

The “aggregate” parameter of the subrule “positional association” has been split into
“array aggregate” and “record aggregate”. For example, change:

check style (positional_association, aggregate);

into:

check style (positional_association, record_aggregate, array_aggregate);

Appendix C: Non upward-compatible changes 161

C.10 Migrating from 1.4r20

C.10.1 GPS integration

The XML file used to describe AdaControl features to GPS used to be called adactl.xml.
It is now called zadactl.xml, since GPS processes its initialization files in alphabetical
order. This avoids shuffling the menus when AdaControl support is activated.

Make sure to remove the old adactl.xml file from the GPS plug-ins directory before
installing the new version.

C.10.2 Declarations

The parameters “access” and “access subprogram” have been changed to “access type” and
“access subprogram type”, for consistency with the new parameters.

C.10.3 Header Comments

A keyword has been added to specify the required number of comment lines. Change:

check Header_Comments (10);

to:

check Header_Comments (minimum, 10);

C.10.4 No Closing Name

This rule is now part of the “style” rule. Change:

check|search|count No_Closing_Name;

to:

check|search|count Style (No_Closing_Name);

C.10.5 Specification Objects

This rule is now part of the “usage” rule. Change:

check|search|count Specification_Objects (<parameters>);

to:

check|search|count Usage (Object, From_Spec, <parameters>);

C.10.6 Statement

Name changed from “statement” to “statements” (added an ’s’), to be consistent with other
rules.

C.10.7 When Others Null

This rule is now part of the “statements” rule. Change:

check|search|count When_Others_Null (case);

check|search|count When_Others_Null (exception);

to:

check|search|count Statements (case_others_null);

check|search|count Statements (exception_others_null);

	Introduction
	Features
	Support
	Commercial support
	Other support
	Your support to us, too!

	History
	References

	Installation
	Building AdaControl from source
	Getting the correct version of the sources for your Gnat version
	Prerequisites
	Build with installer (Windows)
	Build with project file
	Build with Makefile
	Build with a compiler other than GNAT
	Testing AdaControl
	Customizing AdaControl

	Installing AdaControl
	Installing support for GPS
	Installing support for AdaGide

	Program Usage
	Command line parameters and options
	Input units
	Commands
	Output file
	Output format
	Output limits
	Project files
	Local disabling control
	Verbose and debug mode
	Treatment of warnings
	Exit on error
	ASIS options

	Return codes
	Environment variable and default settings
	Interactive mode
	Other execution modes
	Getting help
	Checking commands syntax
	Generating a units list

	Running AdaControl from GPS
	The AdaControl menu and buttons
	Contextual menu
	AdaControl switches
	Files
	Processing
	Debug
	Output
	ASIS

	AdaControl preferences
	AdaControl language
	AdaControl help
	Caveat

	Running AdaControl from AdaGide
	Helpful utilities
	pfni
	makepat.sed
	unrepr.sed

	Optimizing Adacontrol
	Tree files and the ASIS context
	Generating tree files manually
	Choosing an appropriate combination of options

	In case of trouble
	Known issues
	AdaControl or ASIS failure

	Command language reference
	General
	Controls
	Control kinds and report messages
	Parameters
	Multiple controls
	Disabling controls
	Block disabling
	Line disabling

	Limitation

	Other commands
	Go command
	Quit command
	Message command
	Help command
	Clear command
	Set command
	Source command
	Inhibit command

	Example of commands

	Rules reference
	Abnormal_Function_Return
	Syntax
	Action
	Tips

	Allocators
	Syntax
	Action
	Tips
	Limitations

	Array_Declarations
	Syntax
	Action
	Tips

	Aspects
	Syntax
	Action

	Assignments
	Syntax
	Action
	Tip
	Limitations

	Barrier_Expressions
	Syntax
	Action
	Tips

	Case_Statement
	Syntax
	Action
	Tips
	Limitations

	Characters
	Syntax
	Action
	Limitations

	Comments
	Syntax
	Action
	Tips
	Limitations

	Declarations
	Syntax
	Action
	Tips
	Limitation

	Default_Parameter
	Syntax
	Action
	Tip

	Dependencies
	Syntax
	Action
	Tips

	Directly_Accessed_Globals
	Syntax
	Action
	Tips
	Limitations

	Duplicate_Initialization_Calls
	Syntax
	Action
	Limitation

	Entities
	Syntax
	Action
	Tips
	Limitation

	Entity_Inside_Exception
	Syntax
	Action

	Exception_Propagation
	Syntax
	Action
	Tips
	Limitations

	Expressions
	Syntax
	Action
	Tips
	Limitations

	Generic_Aliasing
	Syntax
	Action
	Limitations

	Global_References
	Syntax
	Action
	Tips
	Limitations

	Header_Comments
	Syntax
	Action
	Tips
	Limitation

	Improper_Initialization
	Syntax
	Action
	Tips
	Limitations

	Instantiations
	Syntax
	Action
	Tips
	Limitation

	Insufficient_Parameters
	Syntax
	Action
	Tips

	Local_Access
	Syntax
	Action
	Tips

	Local_Hiding
	Syntax
	Action
	Variables
	Tips

	Max_Blank_Lines
	Syntax
	Action

	Max_Call_Depth
	Syntax
	Action
	Tip
	Limitations

	Max_Line_Length
	Syntax
	Action

	Max_Nesting
	Syntax
	Action

	Max_Size
	Syntax
	Action
	Tip

	Max_Statement_Nesting
	Syntax
	Action

	Movable_Accept_Statements
	Syntax
	Action
	Tips

	Naming_Convention
	Syntax
	Action
	Variables
	Tips
	Limitations

	No_Operator_Usage
	Syntax
	Action
	Tips

	Non_Static
	Syntax
	Action
	Limitations
	Tips

	Not_Elaboration_Calls
	Syntax
	Action
	Limitations

	Not_Selected_Name
	Syntax
	Action
	Tip

	Object_Declarations
	Syntax
	Action
	Tip
	Limitation

	Parameter_Aliasing
	Syntax
	Action
	Limitation

	Parameter_Declarations
	Syntax
	Action
	Tips

	Positional_Associations
	Syntax
	Action
	Tips

	Potentially_Blocking_Operations
	Syntax
	Action
	Tips
	Limitation

	Pragmas
	Syntax
	Action
	Tips

	Record_Declarations
	Syntax
	Action
	Tips
	Limitations

	Reduceable_Scope
	Syntax
	Action
	Tips
	Limitation

	Representation_Clauses
	Syntax
	Action
	Limitation
	Tips

	Return_Type
	Syntax
	Action

	Side_Effect_Parameters
	Syntax
	Action
	Limitation

	Silent_Exceptions
	Syntax
	Action
	Limitations

	Simplifiable_Expressions
	Syntax
	Action
	Tips

	Simplifiable_Statements
	Syntax
	Action
	Tips

	Statements
	Syntax
	Action
	Tips

	Style
	Syntax
	Action
	Tips
	Limitations

	Terminating_Tasks
	Syntax
	Action
	Tips

	Type_Initial_Values
	Syntax
	Action

	Type_Usage
	Syntax
	Action
	Tips

	Uncheckable
	Syntax
	Action
	Tips
	Limitation

	Unit_Pattern
	Syntax
	Action
	Tips

	Units
	Syntax
	Action
	Tip

	Unnecessary_Use_Clause
	Syntax
	Action
	Tip
	Limitations

	Unsafe_Elaboration
	Syntax
	Action
	Tips

	Unsafe_Paired_Calls
	Syntax
	Action
	Tips
	Limitation

	Unsafe_Unchecked_Conversion
	Syntax
	Action
	Limitation

	Usage
	Syntax
	Action
	Tips
	Limitations

	Use_Clauses
	Syntax
	Action

	With_Clauses
	Syntax
	Action
	Variables
	Tips

	Examples of using AdaControl for common programming rules
	Migrating from Gnatcheck
	Rules files provided with AdaControl
	Automatically checkable rules
	Rules that need manual inspection

	Specifying an Ada entity name
	General syntax
	Overloaded names
	Enumeration literals
	Operators
	Attributes
	Anonymous constructs and extended return statements
	Record and protected types components
	Formals of access to subprogram types
	Limitation

	Syntax of regular expressions
	Non upward-compatible changes
	Migrating from 1.15r5
	Array_Declarations
	Multiple_Assignments
	No_Operator_Usage
	Object_Declarations
	Statements
	Style

	Migrating from 1.14r9
	Local_Hiding
	Max_Nesting
	Parameter_Declarations

	Migrating from 1.11r4
	Expressions
	Special_Comments

	Migrating from 1.10r10
	GPS integration
	Representation_Clauses

	Migrating from 1.9r4
	Array_Declarations
	Declarations
	Default_Parameter
	Improper_Initialization

	Migrating from 1.8r8
	CSV(X) format
	Default_Parameter
	Other_Dependencies
	Special_Comments
	Statements

	Migrating from 1.7r9
	Case_Statement
	Max_Parameters

	Migrating from 1.6r8
	``message'' command
	``source'' command
	Control_Characters
	If_For_Case
	Instantiations
	Local_Instantiation
	Naming_Convention
	No_Safe_Initialization
	Special_Comments
	Statements

	Migrating from 1.5r24
	Declarations
	Naming_Convention
	Non_Static_Constraint
	Positional_Parameters
	Real_Operator
	Style

	Migrating from 1.4r20
	GPS integration
	Declarations
	Header_Comments
	No_Closing_Name
	Specification_Objects
	Statement
	When_Others_Null

