next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.00009692 seconds elapsed
 -- 0.00116796 seconds elapsed
 -- 0.0002788 seconds elapsed
 -- 0.000103643 seconds elapsed
 -- 0.00106779 seconds elapsed
 -- 0.000293287 seconds elapsed
 -- 0.000090258 seconds elapsed
 -- 0.000088254 seconds elapsed
 -- 0.000241821 seconds elapsed
 -- 0.000098283 seconds elapsed
 -- 0.000958476 seconds elapsed
 -- 0.000266526 seconds elapsed
 -- 0.000094715 seconds elapsed
 -- 0.000924032 seconds elapsed
 -- 0.000241039 seconds elapsed
 -- 0.000101129 seconds elapsed
 -- 0.00088031 seconds elapsed
 -- 0.000248804 seconds elapsed
 -- 0.000111276 seconds elapsed
 -- 0.000984243 seconds elapsed
 -- 0.000275874 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000097562 seconds elapsed
 -- 0.00111938 seconds elapsed
 -- 0.000250376 seconds elapsed
 -- 0.000100537 seconds elapsed
 -- 0.00100668 seconds elapsed
 -- 0.000248082 seconds elapsed
 -- 0.000093364 seconds elapsed
 -- 0.000919274 seconds elapsed
 -- 0.00024191 seconds elapsed
 -- 0.000095047 seconds elapsed
 -- 0.000961181 seconds elapsed
 -- 0.000245948 seconds elapsed
 -- 0.000108282 seconds elapsed
 -- 0.000895999 seconds elapsed
 -- 0.000244456 seconds elapsed
 -- 0.000103954 seconds elapsed
 -- 0.000939931 seconds elapsed
 -- 0.000248583 seconds elapsed
 -- 0.000098974 seconds elapsed
 -- 0.00109861 seconds elapsed
 -- 0.000255386 seconds elapsed
 -- 0.000096399 seconds elapsed
 -- 0.000956804 seconds elapsed
 -- 0.000269663 seconds elapsed
 -- 0.000094295 seconds elapsed
 -- 0.000912611 seconds elapsed
 -- 0.000239136 seconds elapsed
 -- 0.000104384 seconds elapsed
 -- 0.000916007 seconds elapsed
 -- 0.000240267 seconds elapsed
 -- 0.000104445 seconds elapsed
 -- 0.00090144 seconds elapsed
 -- 0.000247562 seconds elapsed
 -- 0.000102631 seconds elapsed
 -- 0.000949219 seconds elapsed
 -- 0.000277758 seconds elapsed
 -- 0.000104735 seconds elapsed
 -- 0.00139279 seconds elapsed
 -- 0.000453545 seconds elapsed
 -- 0.000096851 seconds elapsed
 -- 0.00137118 seconds elapsed
 -- 0.000425443 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.