We compute the equation and nonminimal resolution F of the carpet of type (a,b) where $a \ge b$ over a larger finite prime field, lift the complex to the integers, which is possible since the coefficients are small. Finally we study the nonminimal strands over ZZ by computing the Smith normal form. The resulting data allow us to compute the Betti tables for arbitrary primes.
i1 : a=5,b=5
o1 = (5, 5)
o1 : Sequence
|
i2 : elapsedTime T=carpetBettiTable(a,b,3)
-- 0.00365857 seconds elapsed
-- 0.0103321 seconds elapsed
-- 0.042305 seconds elapsed
-- 0.0197 seconds elapsed
-- 0.00567 seconds elapsed
-- 0.344567 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o2 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o2 : BettiTally
|
i3 : J=canonicalCarpet(a+b+1,b,Characteristic=>3);
ZZ
o3 : Ideal of --[x ..x , y ..y ]
3 0 5 0 5
|
i4 : elapsedTime T'=minimalBetti J
-- 0.27111 seconds elapsed
0 1 2 3 4 5 6 7 8 9
o4 = total: 1 36 160 315 302 302 315 160 36 1
0: 1 . . . . . . . . .
1: . 36 160 315 288 14 . . . .
2: . . . . 14 288 315 160 36 .
3: . . . . . . . . . 1
o4 : BettiTally
|
i5 : T-T'
0 1 2 3 4 5 6 7 8 9
o5 = total: . . . . . . . . . .
1: . . . . . . . . . .
2: . . . . . . . . . .
3: . . . . . . . . . .
o5 : BettiTally
|
i6 : elapsedTime h=carpetBettiTables(6,6);
-- 0.00414481 seconds elapsed
-- 0.0175447 seconds elapsed
-- 0.131376 seconds elapsed
-- 1.62492 seconds elapsed
-- 0.439382 seconds elapsed
-- 0.0399574 seconds elapsed
-- 0.00649302 seconds elapsed
-- 5.38151 seconds elapsed
|
i7 : carpetBettiTable(h,7)
0 1 2 3 4 5 6 7 8 9 10 11
o7 = total: 1 55 320 891 1408 1155 1155 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 . . . . . .
2: . . . . . . 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o7 : BettiTally
|
i8 : carpetBettiTable(h,5)
0 1 2 3 4 5 6 7 8 9 10 11
o8 = total: 1 55 320 891 1408 1275 1275 1408 891 320 55 1
0: 1 . . . . . . . . . . .
1: . 55 320 891 1408 1155 120 . . . . .
2: . . . . . 120 1155 1408 891 320 55 .
3: . . . . . . . . . . . 1
o8 : BettiTally
|