LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Files Functions Typedefs Macros
dlanst.f File Reference

Go to the source code of this file.

Functions/Subroutines

double precision function dlanst (NORM, N, D, E)
 DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix. More...
 

Function/Subroutine Documentation

double precision function dlanst ( character  NORM,
integer  N,
double precision, dimension( * )  D,
double precision, dimension( * )  E 
)

DLANST returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric tridiagonal matrix.

Download DLANST + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLANST  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 real symmetric tridiagonal matrix A.
Returns
DLANST
    DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in DLANST as described
          above.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, DLANST is
          set to zero.
[in]D
          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of A.
[in]E
          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) sub-diagonal or super-diagonal elements of A.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 101 of file dlanst.f.

Here is the call graph for this function: